• 검색 결과가 없습니다.

Evaluation on formability of complex concentrated alloys with

N/A
N/A
Protected

Academic year: 2022

Share "Evaluation on formability of complex concentrated alloys with"

Copied!
56
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Department of Materials Science and Engineering, Seoul National University, Republic of Korea

Evaluation on formability of complex concentrated alloys with different deformation mechanism

Current Status of Structural Materials 2020.04.13

Jeong-Won Yeh

(2)

ESPark Research Group 2

Contents

1. Why Complex Concentrated alloys(CCAs) system ?

(1) Uniqueness of Complex Concentrated alloys (2) Necessity of Formability test

2. What measurement method is used to evaluate Formability?

(1) Forming Limit Diagram (2) Limit Dome Height test

3. Associated stress state during forming

4. Difference of deformation behavior depending on stress state

5. How to design CCAs with enhanced formability 6. Conclusion

(1) Uniaxial stress state (2) Plane stress state

(1) Deformation mechanism: Twinning

(2) Deformation mechanism: Phase transformation

(3)

Minor element 2 Minor

element 3

Major element

Conventional alloys

Minor

element 1 Major

element 2 Major element 3 Major

element …

Major element 1

Complex concentrated alloys

∆𝑆𝑐𝑜𝑛𝑓𝑖𝑔.= 𝑅𝑙𝑛(𝑛)

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 ↑ ↔ 𝒄𝒐𝒏𝒇𝒊𝒈𝒖𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒆𝒏𝒕𝒓𝒐𝒑𝒚 ↑

Ex) Fe, Cu, Al, Ti, Mg, Zr Ex) Al20Co20Cr20Fe20Ni20

(1) Thermodynamics : high entropy effect (2) Kinetics : sluggish diffusion effect

(3) Structure : severe lattice distortion effect (4) Property : cocktail effect

Composed of five or more principal elementswith the concentration of each element being between 5 - 35 at.%.

Composition based definition (High entropy alloy)

Additional definition

Single-phase solid solution (or multiphase when consisting phases satisfy composition based or entropy based definitions.)

Complex concentrated alloy: a new paradigm of alloy design

(4)

ESPark Research Group 4

Cantor alloy: Cr20Mn20Fe20Co20Ni20

B.Gludovatz et al., Science 345, 1153 (2014)

Representative complex concentrated alloy: cantor alloy

CCAs are expected to be structural materials

(5)

Formability evaluation is essential for using HEAs as structural materials.

DP 600

Mild steel

DP 980

DP 800 DP 1000

(6)

ESPark Research Group 6

Necessity of formability test: Evaluation of formability

Evaluate formability

From uniaxial tensile test

• Yield stress

• Ultimate tensile stress

• Uniform elongation

• Strain hardening

Additional property

• Plastic instability

• Localized necking

• R-value

• Strain rate sensitivity

onset of necking occur at

strain = strain hardening exponent σ = Kσn, dσ/dε = nKεn-1 = σ

or ε = n

(7)

Formability tendency effected by additional property_TWIP940

K. Chung et al./ International Journal of Plasticity 27(2011)52-81

Variation of the m value of the TWIP940 steel with respect to strain and strain rate.

Magnified dynamic strain aging section of tensile curve of TWIP940

Fail without strain localization, – strain rate sensitivity(m): formability ↓

+

Negative strain rate sensitivity

Fail without strain localization

Serrations Negative SRS

(8)

ESPark Research Group 8

CCAs Design with various deformation mechanism by SFE control

Schokely Partial dislocation 𝟏

𝟐 𝟏𝟏𝟎 = 𝟏

𝟔 𝟏𝟐ഥ 𝟏 +𝟏 𝟔[ഥ𝟐𝟏𝟏]

Depending on the stacking fault energy, deformation mechanism of an alloy system can be changed from dislocation movement to phase transformation

𝜞 ∶ 𝑺𝒕𝒂𝒄𝒌𝒊𝒏𝒈 𝒇𝒂𝒖𝒍𝒕 𝒆𝒏𝒆𝒓𝒈𝒚

𝝆 = 𝟒

𝟑 𝟏 𝒂𝟐𝑵

𝜌 ∶ 𝑚𝑜𝑙𝑎𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑙𝑜𝑛𝑔 {111}

Δ𝐺𝛾→𝜀∶ 𝑀𝑜𝑙𝑎𝑟 𝐺𝑖𝑏𝑏𝑠 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝜎 ∶ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 (5 − 15 𝑚𝐽/𝑚−2)

𝜞 = 2𝜌𝜟𝑮 𝜸→𝜺 + 2𝜎

𝜟𝑮

𝜸→𝜺

phase is the dominant factor to change the SFE of an alloy system

Decrease of Stacking Fault Energy

(9)

CCAs Design with various deformation mechanism by SFE control

8 10 12 14 16 18 20 22 24 26 28

0 500 1000 1500 2000 2500 3000 3500 4000

Gibbs free energy (HCP-FCC) (J)

Mn contents(%)

8 10 12 14 16 18 20 22 24 26 28

0 500 1000 1500 2000 2500 3000 3500 4000

Gibbs free energy (HCP-FCC) (J)

Ni contents(%)

14 16 18 20 22 24 26 28 30 32

0 500 1000 1500 2000 2500 3000 3500 4000

Gibbs free energy (HCP-FCC) (J)

Co contents(%)

18 20 22 24 26 28 30

0 500 1000 1500 2000 2500 3000 3500 4000

Gibbs free energy (HCP-FCC) (J)

Fe contents(%)

Co Mn Fe

Cr 20 20 20 20 Ni 20

Mn Ni Fe Co

By Lowering ∆G

γ→ε

, deformation mechanism can be changed

#

Composition ∆G(hcp-fcc)(J)

1 Cr20Mn20Fe20Co20Ni20 1927.8

2 Cr20Mn14Fe24Co24Ni16 771.0

3 Cr20Mn10Fe30Co30Ni10 245.3

4 Cr20Mn8Fe32Co32Ni8 59.4

(10)

ESPark Research Group 10

Confirmation of deformation mechanism through EBSD

undeform

deform

Deform. m Dislocation gliding Twinning Phase transformation Phase transformation Cr20Mn20Fe20Co20Ni20 Cr20Mn14Fe26Co26Ni14 Cr20Mn10Fe30Co30Ni10 Cr20Mn8Fe32Co32Ni8

Bottom

Bending

Dome

Dome Shape

10μm

10μm

10μm

10μm

10μm

10μm

40μm

10μm 10μm 10μm

10μm

10μm

Martensite Austenite

ND

RD TD

Min 0 Max 4

Note Cantor TWIP TRIP (TRIP Assisted Dual Phase)TADP

(11)

Formability measurement method

Formability measurement method

Minor strain(ε2) Major strain1)

Good formability

h: Limit Dome Height

: Good formability Limit Dome Height

Forming Limit Diagram Limit Dome Height test

Method 1 Method 2

Reflect material’s stretchability Reflect material's drawability

(12)

ESPark Research Group 12

Formability measurement method 1: Forming Limit Diagram(experiment)

Before deformation of sheet

……

after deformation of sheet

crack

……

ε2=0 ε1>0

Plane strain

Uniaxial tension

ε2>0 ε1>0

ε2>0 ε1>0

Biaxial tension

ε1>0 ε2<0

Minor strain(ε2) Major strain(ε 1)

S. P. Keeler, Met. Prog., October 1966, pp. 148-153

Equi-biaxial tension

(13)

Formability measurement method 1: Forming Limit Diagram(Simulation)

Yield surface → Expansion

Hardening law - Ludwick: 𝜎 = 𝜎𝑦+ 𝐾𝜀𝑛 - Hollomon: 𝜎 = 𝐾𝜀𝑛 - Swift: 𝜎 = 𝐾 𝜀0+ 𝜀 𝑛

- Voce: 𝜎 = 𝜎0− 𝑒𝑥 𝑝 −𝑛 𝜀 − 𝜀0

Yield surface

- Von Mises - Hill1948 - Yield2000

Yield criteria

Isotropic hardening Kinetic hardening Combined isotropic

Kinetic hardening

σ1 σ2

σ1 σ2

σ1 σ2

σ1 σ2

Von Mises

R>1

R<1

Hardening law , Yield criteria

Forming Limit Diagram M-K model

K.S. Chung, M.G. Lee / Basics of Continuum Plasticity

(14)

ESPark Research Group 14

Formability measurement method 1: Forming Limit Diagram(Simulation)

σ1 σ2

σ1 σ2

Hardening law Yield criteria

θ: initial defect in the form of narrow band inclined as an angle

K.S. Chung, M.G. Lee / Basics of Continuum Plasticity

M-K model is based on initial defect and assumes plastic localization occurs

σ1

a

Homogeneous region

b

imperfection region

10dത𝜺 𝒂dത𝜺 b

dത𝜺𝒃 dത𝜺𝒂

: Equivalent strain increment

Marciniak Kuczinsky(M-K) model

Forming limit diagram

Marciniak Kuczinsky(M-K) model

: necking criterion is reached

→Computation is stopped

(15)

Formability measurement method 1: Forming Limit Diagram

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 1400

Cantor TWIP TRIP TADP

True stress()

True strain()

TRIP and TADP are expected to have the good formability

Uniform elongation

Strain hardening

Cantor < TADP< TWIP < TRIP

Cantor < TWIP < TRIP < TADP

(16)

ESPark Research Group 16

Formability measurement method 1: Forming Limit Diagram

Material properties: 1) Uniaxial tensile test according to rolling direction (RD, TD, 45D)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 300 600 900 1200 1500

True stress()

True strain()

Cantor RD

TD 45D

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 300 600 900 1200 1500

RD TD 45D

True stress()

True strain() TWIP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 300 600 900 1200 1500

TRIP RD

TD 45D

True stress()

True strain()

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 300 600 900 1200 1500

TaDP RD

TD 45D

True stress()

True strain()

Cantor TWIP TRIP TADP

R-value

RD 0.88 0.94 1.02 1.07

TD 0.94 0.97 1.02 1.08

45D 1.02 0.97 1.03 1.07

Anisotropy factor (

𝑹

) 0.86 0.96 1.01 1.09

(17)

Formability measurement method 1: Forming Limit Diagram

Material properties: 2) Hardening law

FE analysis result with Voce hardening law was chosen for further analysis

- Thickness of specimen(mm) | Cantor : 1.38 / DP : 1.48 / TWIP : 1.38 / TRIP : 1.52 - Young’s modulus E(GPa) | Cantor : 180.92 / DP : 180.00 / TWIP : 198.21 / TRIP : 188.02 - Poisson’s ratio | Cantor : 0.25 / DP : 0.32 / TWIP : 0.28 / TRIP : 0.31

- Von Mises isotropic yield function - Hardening law : Swift, Voce(better result)

Swift hardening law ഥ𝛔 = 𝐤 ത𝛆𝐩+ 𝐞𝟎 𝐧

k e0 n

Cantor 1462.31 0.0261 0.4077

TWIP 1632.66 0.0471 0.5479

TRIP 1892.71 0.0445 0.5770

TADP 2111.97 0.0564 0.6050

Voce hardening law ഥ𝛔 = 𝛔𝟎+ 𝐑 𝟏 − 𝐞−𝐛ത𝛆𝐩

σ0 R b

Cantor 355.67 793.36 4.1480

TWIP 322.91 1239.83 2.1954

TRIP 337.63 1587.39 1.9056

TADP 387.86 1850.02 1.7314

0 1 2 3 4 5 6

0 2000 4000 6000 8000 10000 12000

Load(kN)

Displacement(mm) EXP Simul_Swift Simul_Voce Cantor

0 1 2 3 4 5 6

0 2000 4000 6000 8000 10000 12000

TWIP

EXP Simul_Swift Simul_Voce

Load(kN)

Displacement(mm)

0 1 2 3 4 5 6

0 2000 4000 6000 8000 10000 12000

EXP Simul_Swift Simul_Voce TRIP

Load(kN)

Displacement(mm)

0 1 2 3 4 5 6

0 2000 4000 6000 8000 10000 12000

TADP

EXP Simul_Swift Simul_Voce

Load(kN)

Displacement(mm)

(18)

ESPark Research Group 18

Formability measurement method 1: Forming Limit Diagram

ESPark Research Group 18

1. Hill anisotropy: F(σy- σz)2+G(σz- σx)2+H(σx- σy)2+2Lτyz2+2Mτzx2+2Nτzy2=1 2. Yield 2000 criteria:

𝒇𝑴𝟏 = {𝟐}𝑴𝟏= 𝝈 with ∅ = ෪𝑺𝟏′ − ෫𝑺𝟏𝟏′ 𝑴+ ෫𝑺𝟏𝟏′ − ෪𝑺𝟏′𝑴+ ෫𝟐𝑺𝟏′′ − ෫𝑺𝟏𝟏′′𝑴

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Cantor

Von Mises Hill 48 Yld 2000

stress 2

stress 1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 TWIP

Von Mises Hill 48 Yld 2000

stress 2

stress 1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Von Mises Hill 48 Yld 2000

stress 2

stress 1 TRIP

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Von Mises Hill 48 Yld 2000 TADP

stress 2

stress 1

Yield 2000 criteria was chosen for further FEM simulation.

using measured R values

TWIP, TRIP TADP breaks rapidly after UTS

Material properties: 3) Yield criteria

(19)

Formability measurement method 1: Forming Limit Diagram

Material properties: Simulation factors

Yield

function A1 A2 A3 A4 A5 A6 A7 A8

Cantor Yield 2000 1.044313 0.900592 1.063173 0.981113 0.997253 0.978494 0.986111 0.956883

TWIP Yield 2000 0.964852 1.048262 0.969563 1.010907 1.004901 0.998649 1.014691 1.050405

TRIP Yield 2000 0.975463 1.043968 0.975509 1.008013 1.002224 1.003852 1.003332 0.999599

Dual Phase Yield 2000 1.000951 1.011217 1.001635 0.99864 0.997925 1.005233 1.007512 0.995052

hardening law: Voce

Hardening law A(S0) B(R) C(B)

Cantor Voce 310 747.0954 5.516197

TWIP Voce 322.9056 1239.834 2.195402

TRIP Voce 337.6338 1587.389 1.905647

Dual Phase Voce 387.8632 1850.025 1.731408

Yield function: Yield 2000

𝝈 = 𝝈𝟎 + 𝑹 𝟏 − 𝒆−𝒃ത𝜺𝒑 or ത𝜎 = 𝐴 − 𝐵𝑒𝑥𝑝 −𝐶 ҧ𝜀 , 𝑤𝑖𝑡ℎ 𝐵 = exp(𝑛𝜀0)

(20)

ESPark Research Group 20

measurement method 1: Forming Limit Diagram

Forming Limit Diagram by Simulation : TADP > TRIP > TWIP > Cantor

Good formability

-1.0 -0.5 0.0 0.5 1.0

0.2 0.4 0.6 0.8 1.0

Major strain

Minor strain Cantor

TWIP TRIP TaDP

(21)

Forming Limit Diagram of commercial alloys

Fe18%MnAlC TWIP

IF EDDQ

Fe15%MnAlC TWIP

TRIP 700

Ti6Al4V Al6061-T6 5083 Al-Mg 0.6

0.5

0.4

0.3

0.2

0.1

0.1 0.2 0.3

0.0 -0.1

-0.2 -0.3

Major Strain

Minor Strain

[ref]

Fe18%MnAlC TWIP: De Cooman et al./ State-of-the-knowledge on TWIP steel IF: De Cooman et al./ State-of-the-knowledge on TWIP steel

EDDQ: De Cooman et al./ State-of-the-knowledge on TWIP steel

Fe15%MnAlC TWIP: De Cooman et al./ State-of-the-knowledge on TWIP steel TRIP 700: De Cooman et al./ State-of-the-knowledge on TWIP steel

5083 Al-Mg alloy: T. Naka et al./ Journal of Material Processing Technology 113(2001) 648-653 Ti6Al4V: F.Djavanroodi, A. Derogar/ Materials and Design 31 (2010) 4866-4875

Al6061-T6: F.Djavanroodi, A. Derogar/ Materials and Design 31 (2010) 4866-4875 Cantor: experience

TWIP: experience TRIP: experience Dual Phase: experience

(22)

ESPark Research Group 22

CCAs Forming Limit Diagram comparison with commercial alloys

[ref]

Fe18%MnAlC TWIP: De Cooman et al./ State-of-the-knowledge on TWIP steel IF: De Cooman et al./ State-of-the-knowledge on TWIP steel

EDDQ: De Cooman et al./ State-of-the-knowledge on TWIP steel

Fe15%MnAlC TWIP: De Cooman et al./ State-of-the-knowledge on TWIP steel TRIP 700: De Cooman et al./ State-of-the-knowledge on TWIP steel

5083 Al-Mg alloy: T. Naka et al./ Journal of Material Processing Technology 113(2001) 648-653 Ti6Al4V: F.Djavanroodi, A. Derogar/ Materials and Design 31 (2010) 4866-4875

Al6061-T6: F.Djavanroodi, A. Derogar/ Materials and Design 31 (2010) 4866-4875 Cantor: experience

TWIP: experience TRIP: experience Dual Phase: experience

TWIP Cantor TRIP TADP

(23)

Formability measurement method 1: Forming Limit Diagram(Experiment)

Cantor

(24)

ESPark Research Group 24

ESPark Research Group

TWIP

Formability measurement method 1: Forming Limit Diagram(Experiment)

(25)

Formability measurement method 1: Forming Limit Diagram(Experiment)

TRIP

(26)

ESPark Research Group 26

ESPark Research Group

TADP

Formability measurement method 1: Forming Limit Diagram(Experiment)

(27)

Formability measurement method 1: Forming Limit Diagram(Experiment)

(28)

ESPark Research Group 28

Formability measurement method 2: Limit Dome Height test

Die

Hold down ring

P(Punch load)

D0 DP

d0

Punch

Before punching After punching

h : Limit Dome Height

Formability is determined by relative value of Limit Dome Height

Limit Dome Height is stopped right after fracture occur

Formability is evaluated byLimit Dome Height value

(29)

Formability measurement method 2: Limit Dome Height test

Limit Dome Height(LDH) test is stopped right after fracture occur

Specimen preparation

Cantor TWIP TRIP TADP

RD

(30)

ESPark Research Group 30

Results(measurement method 2): Limit Dome Height test

TWIP(10.95mm)>TRIP(9.68mm)>Cantor(8.195mm)>TADP(7.98mm)

Good formability

0 2 4 6 8 10 12 14

0 10000 20000 30000 40000 50000 60000 70000

Cantor TWIP TRIP TADP

Force (N)

Limit Dome Height(mm)

(31)

Comparison uniaxial Tensile test and Limit Dome Height Test

Localization

Localization + fracture

4 6 8 10 12

TRIP TADP TWIP

Limit Dome Height(mm)

Cantor

0.1 0.2 0.3 0.4 0.5

strain(

e u)

(32)

ESPark Research Group 32

Fracture test: Concept of Triaxiality

η=0

η=0.33

η=-0.33 Triaxiality(η) = 𝝈𝒎

𝝈𝒆𝒒 =

𝟏

𝟑(𝝈𝟏+ 𝝈𝟐+ 𝝈𝟑) 𝟏

𝟐 (𝝈𝟏− 𝝈𝟐)𝟐+(𝝈𝟐− 𝝈𝟑)𝟐+(𝝈𝟑− 𝝈𝟏)𝟐+𝟔[ 𝝈𝟏𝟐 𝟐+ 𝝈𝟐𝟑 𝟐+ 𝝈𝟏𝟑 𝟐]

𝝈𝒎 = hydrostatic stress

𝝈𝒆𝒒= von Mises equivalent stress

Stress state η

Uniaxial tension 0.33 Equi-biaxial tension 0.67 Plane strain tension 0.58

Simple shear 0

By changing the triaxiality, the stress state applied to the material can be adjusted

Stress triaxiality (η)represented stress state by the scalar value

(33)

Fracture test: Example of specimen(2024 Aluminum alloy)

Pure shear

• Triaxiality: 0 ~ 0.02

Combined shear & tension

• Triaxiality: 0.04 ~ 0.15

Circular hole (tensile loading)

• Triaxiality: 0.33

Pure shear test

Uniaxial tension Shear+tension

International Journal of Mechanical Science 46 (2004) 81-98

(34)

ESPark Research Group 34

Fracture test: Finite element(Central hole, Notched test)

Triaxiality(η) = 𝝈𝒎 𝝈𝒆𝒒

=

𝟏

𝟑 (𝝈𝟏+ 𝝈𝟐+ 𝝈𝟑) 𝟏

𝟐 (𝝈𝟏− 𝝈𝟐)𝟐+(𝝈𝟐− 𝝈𝟑)𝟐+(𝝈𝟑− 𝝈𝟏)𝟐+𝟔[ 𝝈𝟏𝟐 𝟐+ 𝝈𝟐𝟑 𝟐+ 𝝈𝟏𝟑 𝟐]

FE model

Software : abaqus/standard

Quarter symmetry model

Element type :

8node brick element with reduced integration (C3D8R)

Element size at critical point : 0.05mm x 0.05mm x (thickness/16)

Number of element : CH – 14672 / NT – 17632

Number of node :

CH – 16853 / NT – 20032

x y

z

y Critical point, stress and strain history is obtained at here

Notched test

x y

z

y Critical point, stress and strain history is obtained at here

Central hole

→ uniaxial stress state → plane stress state

(35)

Fracture test: Experimental setup

CCD cameras

Specimen

White light

DIC conditions DIC type : Stereo DIC

Software VIC-3D 7

CCD resolution (pixcels) 2448 x 2048 CCD sensor 2/3 inch grey scale

Mechanical test conditions

Frame Instron 8801

Load cell capacity 100kN

Test speed 1mm/min

Central hole Notched test

Before deform After deform

26 mm

60 mm 10 mm

45˚

15 mm

29 mm 7.5 mm

R5 mm 26 mm

60 mm 10 mm

45˚

15 mm

29 mm 3 mm

R5 mm

2mm

2mm

(36)

ESPark Research Group 36

FE analysis of η of Central hole test: uniaxial stress state

36 With increasing equivalent strain,

stress triaxiality (η)=0.33

is maintained in Central hole test

𝖷: Onset of fracture

0.00 0.33 0.66 0.99

0.0 0.5 1.0 1.5

Cantor TWIP TRIP TADP

Equivalent strain

Stress triaxiality

(37)

FE analysis of η of Notched test: uni - biaxial stress state

With increasing equivalent strain, η changes from 0.56 to 0.66

𝖷: Onset of fracture

0.00 0.33 0.66 0.99

0.0 0.5 1.0 1.5

Equivalent strain

Stress triaxiality

Cantor TWIP TRIP TADP

Biaxial strain condition Plane strain condition

Notched specimen reflects the strain condition of the material during deformation.

(38)

ESPark Research Group 38

Comparison of Central hole and Notched test equivalent strain

𝖷: Onset of fracture

For Phase transformation materials, equivalent strain is decreased

TADP: Central hole Notched test TRIP: Central hole Notched test Cantor: Central hole Notched test TWIP: Central hole Notched test

0.00 0.33 0.66 0.99

0.0 0.5 1.0 1.5

Cantor TWIP TRIP TADP

Equivalent strain

Stress triaxiality

(39)

Fracture test: interrupttest at equivalent strain = 0.3

𝖷: Onset of fracture

● : equivalent strain= 0.3

Identify displacement corresponding to ε = 0.3 in each stress state

equivalent plastic strain - Central hole

- Notched test

Displacement at equivalent strain = 0.3

0.00 0.33 0.66 0.99

0.0 0.5 1.0 1.5

Cantor TWIP TRIP TADP

Equivalent strain

Stress triaxiality

(40)

ESPark Research Group 40

Fracture test: interrupttest at equivalent strain = 0.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0 200 400 600

Load(kgf)

Displacement

Cantor CH Cantor NT TWIP CH TWIP NT TRIP CH TRIP NT

Dual Phase CH Dual Phase NT

Fracture test was interrupted to compare the deformation behavior

Central hole

Notched test

Before deform After deform

Before deform After deform

Uniaxial strain condition

Plane to biaxial strain condition

(41)

Deformation behavior depending on stress state:TWIP

Thickness of twins, influences their plastic behavior

← Interrupt test at ε

eq

=0.1

tension

Simple shear Twin : 15 - 50nm

Twin : 20-300nm These two micrographs reveals a difference in the thickness of twin as a function of the stress state

K. Renard et al. / Scripta Materialia 66 (2012) 966–971

(42)

ESPark Research Group 42

Interrupted Fracture test:TWIP

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0 200 400 600

Central hole Notched test

Load(kgf)

Displacement(mm) Central hole : stress state(η=0.33)

Notched test : stress state(η=0.33~0.66)

50μm

2

1

50μm

2

1

(43)

Interrupted Fracture test: Central hole test(TWIP)

10μm

1

2.33μm

1.35μm 1.06μm

1.90μm

2.25μm

2.87μm 4.75μm

10μm

2

1.67μm

2.11μm

1.79μm

1.61μm

2.03μm

2.23μm2.00μm

2mm

2mm

50μm

2

1

For central hole test(η=0.33), thickness of twins = 2.139μm

± 1μm

Electron channeling contrast imaging(ECCI) of TWIP Central hole test

(44)

ESPark Research Group 44

Interrupted Fracture test: Notched test(TWIP)

1

2.09μm1.81μm 2.73μm 1.27μm

1.52μm 2.86μm

2.02μm

10μm

2 1.76μm

2.60μm

1.48μm 2.80μm

1.97μm 2.11μm

1.46μm

10μm

50μm

Electron channeling contrast imaging(ECCI) of TWIP Notched test

2 1

2mm

2mm

For Notched test(η=0.33~0.67), thickness of twins = 2.03μm

± 0.73μm

(45)

Interrupted Fracture test: TWIP

Central hole Notched test

10μm

1

2.33μm

1.35μm 1.06μm

1.90μm2.25μm

2.87μm 4.75μm

10μm

2

1.67μm 2.11μm

1.79μm

1.61μm

2.03μm

2.23μm2.00μm

1

2.09μm1.81μm 2.73μm 1.27μm

1.52μm 2.86μm

2.02μm

10μm

2 1.76μm

2.60μm

1.48μm 2.80μm

1.97μm 2.11μm

1.46μm

10μm

Twinning thickness of central hole and notched test is similar

(46)

ESPark Research Group 46

Interrupted Fracture test: TRIP

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0 200 400 600

Displacement(mm)

Load(kgf)

TRIP CH TRIP NT

30μm

30μm

Central hole : stress state(η=0.33)

Notched test : stress state(η=0.33~0.66)

Phase name Central hole Notched test

Austenite(γ) 67% 80%

Martensite(ε) 33%

>

20%

Phase transformation is occurred more easily in central hole

Phase map of TRIP

(47)

Interrupted Fracture test: TADP

Phase transformation is occurred more easily in central hole

Central hole : stress state(η=0.33)

Notched test : stress state(η=0.33~0.66)

30μm 30μm

Phase name Central hole Notched test

Austenite(γ) 39.7% 45.5%

Martensite(ε) 60.3%

>

54.5%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0 200 400 600

Load(kgf)

Displacement(mm)

Central hole Notched test

Phase map of TADP

(48)

ESPark Research Group 48

Interrupted Fracture test: TRIP & TADP

30μm 30μm

Central hole TRIP

30μm 30μm

Central hole TADP

Phase name Central hole Notched test

Austenite(γ) 67% 80%

Martensite(ε) 33% 20%

Phase name Central hole Notched test

Austenite(γ) 39.7% 45.5%

Martensite(ε) 60.3% 54.5%

Notched test Notched test

Additional plastic flow is obtained by M transformation in uniaxial stress state

Dislocation gliding Phase transformation

(49)

Summary –deformation behavior difference depending on stress state

4 6 8 10 12

TRIP TADP TWIP

Limit Dome Height(mm)

Cantor

0.1 0.2 0.3 0.4 0.5

strain(

e u)

TWIP

TRIP

TADP

(50)

ESPark Research Group 50

Composition of designed CCAs

New series of CCAs is designed by changing the composition

(51)

True stress strain curve of designed CCAs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0 200 400 600 800 1000 1200 1400 1600

True.s

True.e

Cantor TWIP TRIP DP CCA19 CCA18 CCA17 CCA16 CCA15 CCA13 CCA12 CCA11

(52)

ESPark Research Group 52

Uniform elongation summary of designed CCAs

4 6 8 10 12

CCA11 CCA12

CCA13 CCA15

CCA16 CCA17

CCA18 CCA19

Limit Dome Height(mm)

Cantor TWIP TRIP TaDP

0.1 0.2 0.3 0.4 0.5

strain(

e u)

(53)

Deformation mechanism of designed CCA

4 6 8 10 12

CCA11 CCA12

CCA13 CCA15

CCA16 CCA17

CCA18 CCA19

Limit Dome Height(mm)

Cantor TWIP TRIP Dual Phase

0.1 0.2 0.3 0.4 0.5

strain(

e u)

CCA19

10μm

CCA18

10μm

CCA17

10μm

CCA16

10μm

CCA15

10μm

CCA13

10μm

CCA12

10μm

CCA11

10μm

Martensite Austenite

TD

RD ND

Min 0 Max 5

Martensite Austenite

Min 0 Max 5

(54)

ESPark Research Group 54

Summary –Designed CCAs with enhanced formability

4 6 8 10 12

CCA11 CCA12

CCA13 CCA15

CCA16 CCA17

CCA18 CCA19

Limit Dome Height(mm)

Cantor TWIP TRIP TADP

0.1 0.2 0.3 0.4 0.5

strain(

e u)

Dislocation gilding Twinning Phase transformation

CCA15, TWIP, and CC13 is expected to have good formability

(55)

Conclusion

1. Formability test 2. Fracture test 3. Alloy design

FLD: Cantor < TWIP < TRIP < TADP

LDH: TWIP < TRIP < Cantor < TADP Strain localization

TWIP: Twinning thickness of central hole and notched test is similar

TRIP, TADP: Phase transformation is occurred more easily in central hole

Twinning material follows the uniaxial strain tendency during forming

CCA15, TWIP,and CC13 is expected to

0 2 4 6 8 10 12 14

0 10000 20000 30000 40000 50000 60000 70000

Cantor TWIP TRIP TADP

Force (N)

Limit Dome Height(mm)

(56)

Thank you for your kind attention

참조

관련 문서

As a result of making the regression analysis to find out which variables affected marital satisfaction, the most predictable variable was communication scores, followed

① 조사대상 업소의 선정과 측정은 전국에 분포하고 있는 전 업종을 대상으로 진 행되어야하나 강원도 지역으로 한정한 점과 창업 요인을 네 , 가지 요인으로 제한 점 그리고

지식경영 활동과 지식경영 성과의 관계에 대한 분석결과 개인업무 효과성을 제고하기 위해서는 지식획득과 지식이전이 효과적임을 알 수 있다 따라서 새로운

의 다중공선성 문제로 인해 영향을 미치지 않는 것으로 나타 났으나 외재적 만족에 긍정적 영향을 미칠 수 있음을 알 수 , 있다 따라서 외재적 직무만족도

여건에 맞는 지도내용과 전문지식을 보유하고 있어야 하며, 지도위원의 성실한 태도와 일정 준수 등이 기업경영성과의 주요인으로 간주되는 매출액 증가 원가절감 순이익 증가에

유럽의 요실금 치료기기 시장과 관련하여 제시되고 있는 업 계의 과제 (industry challenges) 는 시장에 영향을 미치는 엄격한 감염관리 규정 시장의 성장을

물체를 감지 데이터화 하여 서버로 전송하고 이 데이터를 , 이용하여 보안영역에 변화가 발생하였을 경우 , IP 네트워크를 통해 연결된 팬틸터를 제어해 무선

표에서 알 수 있듯이 부부간 갈등과 역할수행에 따른 결혼 안정성은 부부간 갈등이 높은 집단이 낮은 집단보다 높았다.. 따라서 부부간 갈등과 결혼안정성은 관련성이 있다는