Vector Space
Wanho Choi
(wanochoi.com)
Linear Combination of Vectors
•
Combining
m n-dimensional vectors
using
scalar multiplications
and
vector additions
y
= a
1x
1+ a
2x
2+ a
3x
3+!+ a
mx
m=
a
ix
i i=1 m∑
a
i∈!, x
i∈!
n, m
∈"
(
)
Vector Space
•
A
n-dimensional space
in which any
linear
combination
of a set of vectors is also in that
space
y
= a
1x
1+ a
2x
2+ a
3x
3+!+ a
mx
m=
a
ix
i i=1 m∑
y
∈!
na
i∈!, x
i∈!
n, m
∈"
(
)
Linearly Dependent / Independent
•
: linearly dependent
•
Otherwise, they are
linearly independent
.
x
1,x
2,x
3,
!,x
miff a
1,a
2,a
3,
!,a
mexist for
a
1x
1+ a
2x
2+ a
3x
3+!+ a
mx
m=
a
ix
i i=1 m∑
= 0
a
1× a
2× a
3×!× a
m≠ 0
(
)
Basis
•
A set of n vectors
in a
n-dimensional space
,
which are
linearly independent
and every vector
in that space can be reproduced by a
linear
combination
of this set.
a
1e
1+ a
2e
2+ a
3e
3+!+ a
ne
n∈!
na
i∈!, e
i∈!
nOrthonormal Basis
•
A set of n vectors
in a
n-dimensional space
,
which are
linearly independent
and every vector
in that space can be reproduced by a
linear
combination
of this set.
a
1e
1+ a
2e
2+ a
3e
3+!+ a
ne
n∈!
na
i∈!, e
i∈!
n(
)
e
i⋅e
j=
0 (i
≠ j)
1 (i
= j)
⎧
⎨
⎪
⎩⎪
Span
•
All
linear combination
of
basis vectors
a
i∈!, e
i∈!
n(
)
Dimension & Rank
•
A
m×nmaps
vectors in
ℝ
nto vectors in
ℝ
m.
•
The
row space
of this matrix is the vector space
generated by linear combinations of the row
vectors.
•
The
rank
of this matrix is
the maximum number
Row Rank = Column Rank
A
m
×n
= B
m
×r
C
r
×n
Row Rank = Column Rank
A
m
×n
= B
m
×r
C
r
×n
Row Rank = Column Rank
A
m
×n
= B
m
×r
C
r
×n
r : the row rank of A
= n A m r B Cn r m
Row Rank = Column Rank
A
m
×n
= B
m
×r
C
r
×n
the row space of A is the span of the rows of C
the column space of A is the span of the columns of B
r : the row rank of A
= n A m r B Cn r m
Row Rank = Column Rank
A
m
×n
= B
m
×r
C
r
×n
the row space of A is the span of the rows of C
the column space of A is the span of the columns of B
a11 a12 a21 a22 ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = b1x b2 x b1y b2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ c1x c1y c2 x c2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = b1xc1x + b2 xc2 x b1xc1y + b2 xc2 y b1yc1x + b2 yc2 x b1yc1y + b2 yc2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ a11 a12 ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = b1xc1x + b2 xc2 x b1xc1y + b2 xc2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = b1x c1x c1y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥+ b2 x c2 x c2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥
⎥: the 1st row vector a21 a22 ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = b1yc1x + b2 yc2 x b1yc1y + b2 yc2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = b1y c1x c1y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥+ b2 y c2 x c2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥
⎥: the 2nd row vector
r : the row rank of A
= n A m r B Cn r m
Row Rank = Column Rank
A
m
×n
= B
m
×r
C
r
×n
the row space of A is the span of the rows of C
the column space of A is the span of the columns of B
a11 a12 a21 a22 ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = b1x b2 x b1y b2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ c1x c1y c2 x c2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = b1xc1x + b2 xc2 x b1xc1y + b2 xc2 y b1yc1x + b2 yc2 x b1yc1y + b2 yc2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ a11 a21 ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = b1xc1x + b2 xc2 x b1yc1x + b2 yc2 x ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = c1x b1x b1y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥+ c2 x b2 x b2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥
⎥: the 1st column vector a12 a22 ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = b1xc1y + b2 xc2 y b1yc1y + b2 yc2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = c1y b1x b1y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥+ c2 y b2 x b2 y ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥
⎥: the 2nd column vector
r : the row rank of A
= n A m r B Cn r m
Row Rank = Column Rank
A
m
×n
= B
m
×r
C
r
×n
=the row space of A is the span of the rows of C
the column space of A is the span of the columns of B
r : the row rank of A
m n A m r B Cn r
the row rank of A = the number of independent row vectors of C = r
the column rank of A = the number of independent column vectors of B = r
Row / Column Space
a
11a
12! a
1na
21a
22! a
2n!
!
"
!
a
m1a
m 2! a
mn⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎥
⎥
A
m
×n
a
11a
12! a
1na
21a
22! a
2n!
!
"
!
a
m1a
m 2! a
mn⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎥
⎥
Row Space: the subspace of !n spanned by the row vectors of A
row vectors
∈!
ncolumn vectors
∈!
mColumn Space
a
11a
12! a
1na
21a
22! a
2n!
!
"
!
a
m1a
m 2! a
mn⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎥
⎥
x
1x
2!
x
n⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎥
⎥
=
b
1b
2!
b
m⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎥
⎥
Ax
= b
m× n n×1 m×1x
1a
11a
21!
a
m1⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎥
⎥
+ x
2a
12a
22!
a
m 2⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎥
⎥
+!+ x
na
1na
2n!
a
mn⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎥
⎥
=
b
1b
2!
b
m⎡
⎣
⎢
⎢
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎥
⎥
Row / Column Space
The solution (x
1, x
2,
!, x
n) exists
iff b is in the column space of A.
Ax
= 0
m× n n×1 m×1
Null Space
Null Space
: the set of vectors x such that Ax=0.