• 검색 결과가 없습니다.

Finite Element Method   

N/A
N/A
Protected

Academic year: 2022

Share "Finite Element Method    "

Copied!
7
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Finite Element Method    

** **



*   

**    

(2000 9 27 , 2000 11 27 )

Fines Behavior Analysis in Blast Furnace with Finite Element Method

Jin-Kyung Chung, Jung-Hee Kim*, Yong-Ok Jeong* and Pan-Wook Park**

Technical Research Laboratories, POSCO, 699 Kumhodong, Kwangyang, Chonnam 544-090, Korea

*School of Chemical Engineering, Pukyong National University, Pusan 608-739, Korea

**Department of Chemical Engineering, Pusan National University, Pusan 609-735, Korea (Received 27 September 2000; accepted 27 November 2000)

 

         ! "#$. % &'( )*+

 ,- . /0 12 Ergun34 567  8%9 : ;<. FEM(Finite Element Method)

 2 2=>? 2@A$.   2@ B &'CD &EFG<B <  FG H4 I JKL M N8 O P QRQS? O 9- /3B T7 2@A$. 2@ B &'(  US4 

V WX -, YZ :  [- \? ]^4 _ `4 a b W#$. cO d2 efgh  ,- b_

2@ 2 O ,-iB jk B lm n )_A?o  ,- 10% " pq 1.5-2 m- " `?

rst$.  ,- u pv wx  20-30% rsy?o z{|}~ B z{|}~ €  10- 20%  ,- rsy$.

Abstract−Fines behaviors are considered as main factors in determining the operation states of blast furnace with PCI(Pul- verized Coal Injection). The gas velocity and pressure distribution in blast furnace was analyzed by Ergun equation with two dimensional FEM(Finite Element Method). The theoretical model to predict the pressure drop was used under assumption that the interaction force between gas and powder is main resistance factor in fines flow through packed bed. To estimate the pow- der hold-up, the model is combined with the experimental result on the fines velocity in gas stream. The size of fines is most important factor in determining the concentration of fine in blast furnace together with density and feeding rate. Both of the measured and calculated results show that 10% fines concentration is at 1.5-2 m distance from tuyere tip. The results of 2-D numerical analysis on the distribution of fines concentration in blast furnace shows 20-30% in deadman and 10-20% above the root of cohesive zone.

Key words: Blast Furnace, Pulverized Coal Injection, FEM, Fines Accumulation

E-mail: jkchung@posco.co.kr

1.  

        

.    !  "#$ % &'( )*+  

 ,- &$ 10-25 m. /, 012 345 6 & ,- 100 m 7. Fig. 18 9:; <= > ?/ @A! B C 

DE A FG H%I$ J KLG M/ N O! PQ RS$( A! H%IT UV2 VWX. V

8  Y5 PE Z@[! CO$I  ?/ \M]( 

DE ^_M PE V2 ( `Z4( M/8( N  a! b(pig iron), ?/8( N $I$ YMc d. e 8( H%I POf g Z@[! CO$I Of@( hi 7 8j kMM KLD lJ! mm= ?nM $I$ op q mi r s o2 tRS u hi M e 8( $K Tv5 Dw[1].

xyU xV, H%I g B y, N/8( pd z g zD {| C  *} E~8( 5 y YMm t }5 y / $IT €LGS + 2 \M9 ‚

(2)

 ƒ/J |JM* o, o„p8 … x† ‡ ˆd.

‰Š(  $I‹ Œ y 4q5  2?. y …

$M* Ž8 …W ‘( ’ q\ “p ”•Mc –—i

˜v$ s. $IT8 y 1- ? ™fM* $I= yE ?š

›œ( Ergun type[2] qžŸœE yE +D  ?š›

œ( ¡  ¢8 !M y £\¤ ¥2 9:  £\

¦~ FM* y qE + 8 M  lM ‡

 $§M. ‚ ¨œ©ª8 x† y …j $M ‡ $§M.

 M/8( H%I +  b, {$ «MM M//¬  N $I$ ?n5. H%I ­I® 8( kœ5 b¯ £\

°' H%I /y yM* H%I xy d. 5± Q² ³ 

/¬ ™LGS+ xyUŒ xV char2 pM* H%I xy g Z@$I= 4´ JM, \M* /$ |JG ‡ ˆd.

xy \E |JŒ  o o„p8 … xµ. + 2 ?nM $Iq xy ¶ j·j y¸ %c G]

 2? ™f5. ‚ q xy ¶j ·j ›]

xy |J sc G. 2?8( q\  ¹5.

2 ,? M + 8 sS( ,  2? ²$ r ·

 GS s[3-11]. + 8( xº¡$ ?n£\M]( »¼G ‡

 \J hold-upŠ M L¡  O½F8( |JGS¾ J

»¼GSmm ¿ yT 8( J 1À ~J hold-upŠ 5.

y j8 ,5 ªÁÂE2 M* FEM(Finite Element Method)8  + 8( y |J \#F8 ,5 ² Ãm ¿.

Ä ²8( ª[ Ž8( ÅÆÇd ÂE= y e |J

?È2 FEM8  B5 ÂE2 1` yB4( ~•5 yB r#É ²ÊM¡ MË.

2.  

e 8( y |J¤ ²M ‘( e $I g ¨œ y32 ² M* ’8 ‰ y \ ÌÍ ·'Î 5. ‚5 y |JŒ e

$I g ¨œy38 … x†Ï ( ?ÐÐl8 s Ñ r s

. y j *} $m ÒJ! ¦Ó ²Ô9 $K ~•5 ¦ ӌ ªÁJ ³^ ²M ‡. ‰Š( }5 $Ij g ¨œ

y3 = y j8 Ð5 ªÁªJ ÂE2 ÂÕM* e 8( y 

\8 , Bi r s.

2-1.    

+ 8( $I £\j2 BM ‘( Ergun Ö@

 •KM* FMË[12].

(1)

*(

± ? Š ~ M] ×E >Œ  d.

(2) Ø8 xy ™M] ×E >.

(3) ÙlŽÚM8(  (3) ÛS( ˆ ÜÝ8( ¨œ ²M, ’ ¨œ

 xyM* vV / JyÝ8( q ²MË. = >

 (2), (3) Þ( ÛS( q rß( tolerance) i àám ÞMË.

jj j 3âã ²»8 1äM* Mk5 $~MË

Ï 'å= > 9:æ r s.

(4) Ø8 xy ™M] ×E >.

(5)

q ‚5  (5)2 ÛS( j 3âã ψ2 ²M ‡ xy M* q ²MË.

2-2. Ergun 

e $I ‹ 8 ,5 j g ¨œ ²M ‘( çž  (3) E (5)2 Û ‘M* ˆ ÜÝ8( è g ÙlŽÚ JM ˆ  8 weighted residual JM* vV …h JyM] ¦~

weighted residualŒ ³`p GSÎ 5. à  q¤ CŒ ¨

œ ŽÜMË,  qŒ e²/8( ª[  KLj

0~MË. ‰Š(  (3), (5) è g ÙlŽÚ JE weighting factor(W) jL weak form ¥ZM] 'å E > ²+.

(Weak form)

Weak foam ¥Zd rŒ éê¬ ë’ì M ‘( í?

4r(shape function) NA, NB2 jLM*

 †ZM] 'åE > Galerkin form ¥Zd. 2 @  º ¦~ ~îM* éê¬8  2 ²M ‡ $§M, Newton method2 FM* vV / ˆ JyÝ8( rßd $I

j 3âã ²i r s[13].

(Galerkin form)

2-3.   

Yamaoka C[4]Œ  $I‹ ²8 y 34d Ùï2 ðè

 jLMË. y$ 8 ( rñG Ê?Œ y rñò E ÐóM* Y 5 ,  2? ²yÎ8( ™fGSm smt + T8( y  rñ8 Ð5 ² ’î Ãm ¿ô. y

WJ! £\?È8 õöM* ?È ò ×E > ÷øMË.

çž y ¤ “+ O½ù ¶‘ Jú û{M y ”

∇P

– =(f1+f2Gg)Gg

f1 150 1–εg ϕpdp ---

 

  µg gc --- 1

εg 3ρg

--- f2 1.751 gc ---- 1–εg

εg 3ϕpdpρg

---

 

 

 

, =

=

a0=1 f⁄( 1+f2Gg)

∇P

– 1

a0 ----Gg

=

∇⋅(–a0∇P) ∇= ⋅Gg=0

Ggnew–Ggold

ψ

∇ – =Gs

∇⋅(–∇ψ) ∇= ⋅Gs=0

W⋅raz∂z---dΩ2P2 +

W⋅ar∂r--- r∂P---∂rdΩ=0

W CANA

A=1

n , P=B

n=1NBdB

=

∂NA

--- a∂z z ∂NB ---∂z

B=1

n dB ∂N---a∂rA r ∂NB ---∂r

B=1

n dB

⋅ + =0

A=1

n

Fig. 1. Schematic diagram of a blast furnace.

(3)

 ~ M, + O½ü y J O½ù εkg, ý· þj 2 ρkŠM* y¤ Hk2 ÿÊM Œ ×E >  r s.

Hk= (1−εkg) ρk (6)

5± yŒ Tœ g $I= ?š›œ °'( £\M £\8 ,M* £\ žŸœ ›M ‡ ˆGS¾( ~??È8( 

×E >Œ   íÐl2 9:æ r s.

(7)

*( Fk,g: $I= y ?š›œ

: y¤8 ?úM Tœ

Rk: £\ žŸœ

u Äl8(  … WM ¢ uv!  uM Ë. 2 y ¢8 sS( £\¤ ¥2 9:  Rk

£\ žŸœ( ×E >  r s.

(8)

*( β Y·~lr( 1/2 ek,p Ylr( 0.9~j.

ρp, dp L¡ þj g ³Ù, εg + O½ù, Uk y j

‰Š( Yœ !( yE $I j W †Mm ¿

. $I8 L¡= 4´ yE ?š›œ JG ‡

 ˆG. ¨œ©ª ∆P/L ×E >  r s.

(9)

*( Fp,g $I= +L¡  ?š ›œ Ergun J

M* ~îM] ×E >  r s.

(10)

*( Ug $IOj

’}9 ª[ ~d E ld Œ Allenh8( ?ú5 Ö2 · Ë.  y j2 ²M E~8( Ergun/¬ ²5 ‡ 8 !5 ‡ ˆd[4, 5]. Kusakabe C[11]Œ }5 ÒJ!

5l2 ½ÞM ªÁªJ $I= y 2? ‹ W m»¦~

 ²MË.

+ 8(  2? ‹  Ùï xy Ofq¤ Gk, xy ? nj Uk g \J hold-up! Hd 8 ×E >Œ Ðl 9:.

(11) + 8( y |JíÈ ~J hold-upE \J hold-up  $ m 9 r s. y *( ³m ¿ Ùï2 ~J hold-up

Š M. ªÁªJ ²5 H%I 8( ~J hold-upŒ × E

>. ‚5

(12)

\J hold-upŒ + 2 ³ y 8  Â~G ‡

ªÁªJ ²5 8( \J hold-upŒ × E > 9

:;.

(13)

’}Ï ~J hold-upE \J hold-up¤ Õ5  hold-up¤Œ

×E > 9:æ r s.

(14)

*( FrŒ Frouder2, Re Reynoldsr2 9: . ˆ ×E >

  r s.

*( Gk xy w¤q¤[Kg/(m2s)], Gg  w¤q¤[Kg/

(m2s)]y y32 ²M ‘( Yamaoka 6 (10)E Kusakabe ªÁ (14)2 M* $I, y 2 ? ‹ W e 8( $I

 g y‹ B FEM ªWMË.

Fig. 2  (3), (10), (14)2 è $I g y‹ B ‘5 éê¬ ë’ì (j2 9:.

3.  

3-1.   

xyU ™L ŽÚ8 ‰Š( q5 vVÓ M*  yj y32 #F5 ÂE= \ŽÚ8( ~5 ª  y j ?È=

1`M ‘( e y ™MË. ~rî2 ‘M* mM

8( PQ RS$ L²! Q²2 o(  3.5 m, ³Ù Fk g, Hkg

gc ---=Rk

Hkg gc ---

Rk 1 gc ----3β1 e+ k p,

1 e– k p,

---(1–εgp(1–εkgk(dp+dk)2 ρpdp3kdk3

---Uk2

=

∆P

---L =Fp g, +Fk g,

∆P

---L (1–εkgk 1 1 gc ----3

2---1 e+ k p, 1 e– k p,

--- (1 d+ k⁄dp)2 1+ρkdk3⁄ρpdp3

( )

---(1–εg) dp ---Uk2

 + 

 

 

=

+150µg gc --- 1–εg

εgϕpdp ---

 

 21 ρg --- ρgUg

εgεkg ---

 

 +1.751 gc ---- 1–εg

εgϕpdp ---

 

 1

ρg --- ρgUg

εgεkg ---

 

 2

Gk=Hd×Uk

Hs⁄ρk=0.71 ReFr( 2)0.45

Hd⁄ρk=82 G( k⁄Gg)(dk⁄dp)0.3(ReFr2)0.9

εkg=Ht⁄ρk={7.5+82 G( k⁄Gg)(dk⁄dp)0.3}(ReFr2)0.9

Fr=(Ug⁄εg)⁄(gdp)0.5, Re= dpUgρg⁄εgµg

Fig. 2. Flow chart for the calculation of fines concentration in blast fur- nace.

(4)

0.15 m –ë2 LM* e +D ÅÆÇ5. WA™ ñ QNj$ 1,200oC, bNj 1,515oC, KLH%I  Lٌ

50 mm! à2 ü ªWMË.

Q²8( ²pD ™ I2 Ü-M*  ²pD ²yM

 ’ ²pD Dp yBM*  Ù¦ H%I “p

ŽFMË. I ²pD 20 cm   ²y5 wM* Lj

 c2 ~M*  c ,1 T¤yÀ 9:.

!c ÅÆÇd I H%I ?È2 ÌÍ·] Q² "#8 V , O ( p$ H%I  û{M ’  e%¦ † þ5 Ž³ &'I( g Vº?È H%I )S+ e% ² pGS s. V,2 ) H%I KLH%I8 1( Lj$

 ~j8 m9m ¿. ÿ] ?È *ï +. &'I( e%

 W›G /y H%I Lj %9 H%I F8 y à 

* s ‡ “,.  Ù¦ H%ILj2 ŽFM* 3 mm

My 10%$ G mÝ î2 Q²/¬ ~M* 2 V , %jŠ ~ MË.

3-2.   

 / ?È2 #FM ‘(  2 839- ÜÝE 759 - vV yiMË, Ùl ŽÚ Q²#8 ¨œE e~#8(

¨œ ÙlŽÚ M *8 ª8(   JMË.

Fig. 3Œ = >Œ ŽÚ8( Ergun8 5 e ˆ JyÝ8( 

jy3 l-2 9:  s. op .Œ eT%8( $I‹

 *ï / , e%E V, ³?/ 0 8( $K $I‹  1

Œ ‡ 2 r s. ‚5  aõ, 348( $I j$ 5VM

²h YM s. !c $I j$ 1Œ 68 y |JGî

Š ‡ 7c -?i r s.

4. 

4-1.  !"#$ %& '( )* +, -

Fig. 4 xyU ™L¤ 86 g 144 kg/t-p8( e +D Lj

8J cyÀ 9:  s. xyU ™L¤ 86 kg/t-p à &' I(/8( Lj$ 25 mmM! H%I T8( 50%2 ÖmM

 s. xyU ™L¤ 144 kg/t-p à 25 mm M H%I$

70% 86 kg/t-p à· Ã. 8 ,5 @!( 144 kg/t-p à

 KL H%I LÙ 51.3 mm 86 kg/t-p à! 48.9 mm· 9¸

: ;8j <²M xyU ™L¤ 144 kg/t-p à Q²?8( 25 mm

M H%I$ Ì ‡Œ xyU ™L¤8 ‰Š( e H%I 

W C H%I y8 … uS( Q²?8( H%I Lj$ J c d ·5 <$ s[1]. !c yd H%I xV xyU E 4´ Q²8( 1.5-2 m mÝ8 ípG &'I(8 c G

 oo„p ¦M* b 5V2 $¾N.

&'I(/y8(  H%I c8 ,5 3 mm M y¤ 1

 ™LG xyU Vp mÿ FGj M. Fig. 58 9:;

<= > y¤ 10%2 ü &'I( W›Ý ²y5. ¶

Ð íÈ xyU ™L I2 FM Ùï 3 mmMyŒ xyU

™L¤ =$8 ‰Š( =$M ] TÐ I2 FM* T%8 xyU 7/8 V/2 M oxy-coal I Ùï \ xyU¤

™LW 3 mmM y¤ Jc 9:>. 144 kg/t-p8( TÐ I 2 FM* xyU ™LM Ùï 3 mm M y¤Œ ¶Ð xyU

™LI2 FM* xyU 86 kg/t-p ™LM Ùï rüE 1?

MË.

xyU ™L¤ g ŽŽÚ8 ‰ V, u‘ + 8( y  j H%I ÅÆÇ oM* •! i r s. ÅÆÇd yŒ dynanic hold-upE static hold-up  Õµ total hold-up¤Š Ñ r s.

Fig. 48 ÅÆÇ WA ˆ ²  wt%2 9:  s. 10 mmM WAT ,/y 3 mmMŠ ‡ 2 r s.

+ uv L¡! H%I 10 mm? 10 mm? WA Fig. 3. Calculated gas velocity distribution in furnace by 2D FEM.

Table 1. Operating conditions and raceway depth changes PCR

(kg/t-p) Tf (oC)

Burning ratio (-)

Fines generation rate (kg/m2s)

Measured raceway depth(m)

186 2234 0.83 0.41 1.9

197 2165 0.81 0.48 1.6

130 2200 0.81 0.62 1.2

124 2307 0.86 0.51 1.5

144 2510 0.93 0.46 1.7

186 2231 0.83 0.41 1.8

Fig. 4. Cumulative coke size distribution at tuyere level.

(a) PCR: 86 kg/t-p and (b) PCR: 144 kg/t-p in blast furnace.

(5)

2 W Lj yîM* 9: S ·] kœ5 ñQ8@m8  ( H%I b¯$ S9 ²h! 50-80 cm²hŒ 25 mmM H%

I$ Ì ‡ Ñ r s ] H%I + W›Ý A~G

80-100 cm y hold-up W›Ý! 3 mmM % H%I yÀ

 10%! mÝám Lj$ B 25 mm? H%I$ Ì ‡ 2 r s.

Table 1Œ *}C8 DE( FS+ H%I ÅÆÇ ÂE/¬ FS+

xyU ™L¤ V, Nj= VÀ ’î V, %j2 9:

 s. V, Nj Ùï oxy-coalŽ Mm ¿ Ùï Žmr T 5   V, Nj 9:. Oxy-coalŽ M Ùï

oxy-coal¤ 1,000 Nm3/hrú 60oC Nj ?n s ²ÂE[14]

2 M* V, Nj2 A~MË. V, Nj/¬ xyU  VÀ A~Œ ×E >  r s[15].

xyU VÀ = V,NjG0.03801−2.08 (16)

 Œ ª8( ~d V, Nj= &'I(8 ! y¤E Ðl/¬ ²H. = 4´ 5 - Q²ú V,8( H%I x yU yY¤Œ ×E >Œ A~ ²MË. *( A1

ü 500 kg/t-p 0~MË.

yY¤(kg/m2/s) =

(17)

*( PCR: xyU ™L¤(kg/t-p)

*( η: VÀ(-)

*( cgas(PCRGη): xyUT $I¤(kg/t-p)

ICJ Ÿ Ùï xyU ™L¤8 ‰Š( H%I yY¤ =$M c GÏ A12 ü xyU ™L¤8 ‰Š( H%Iy l

GjK MË. !c Yd yŒ T 1/3~j$ V, qL GS &'I(8  ‡ $~MË. CJ ŸŒ xyUT rV8 ( e solution loss 5V8 úM yY¤ 9 :[16]. LCJŸŒ xyU VÀ8 ‰ xyU ¡8( Y

G y¤ 9:  s. }5 8 ¼b¤, W  g Q²Mr2

:MÏ( yY q ²i r s. 2 Table 18 9:.

= > V,8( y Y¤Œ xyU VÀ8 ‰Š( xyU

¡ Nt 'OŠ H%I y8 ‰ y Yj :i ˜v$ s×

 2 r s. }5 xyU VÀ g H%I yY¤8 ‰ e 8 y hold-upŒ V, u‘ H%I + 8 På’ g QR 

W  c MÏ op8 … x† ‡ ·!.

4-2. ./ FEM$ 0 +, 1

Fig. 6Œ Table 18 9:; xyU ™L ŽÚ ~d y |J W

›G ‘†, V, %j= yY¤ Ðl2 9:; ‡ yY

¤ =$8 ‰Š( V, %j$ žM Ù *ï S †4

2 r s.

Fig. 7Œ xyU 200 kg/t-p ™LW VÀ 60, 80, 90% à e 8(

y|J?T 9:; ‡. l [ ŽÚ xyU Lj$

75µm, þj$ 1,000 kg/t-p! ‡ MË. VÀ =$8 ‰Š( Q

²³? 0 8( U 5%~j y|J¤ 5V$ sV. e% 8 (j 1 m~j y|J & 5V$ sV. ež …h8( y

j$ ð  9:  ‡Œ aD8 5 y[ WE2 :M m X5 ‡8 !5 ‡ ˆd.

Fig. 8Œ y þj ¥8 ‰ e y |J ?T 9:; ‡.

l [ ŽÚ y Lj$ 0.5 mm, y Y¤ 0.88 kg/m2/sÙ ï8 ,( lMË. y þj$ ¥M Ùï xyU ,Y y

B9 flux2 ™Li à. y þj=$8 ‰Š( e 8( y

|J j$ %c =$Mm ¿9 Q² ³?/= e%8( y|J

²h %$ U  ZSm Ù 9:  s.

Fig. 9 xyU 150 kg/t-p ™LW VÀ 60% ŽÚ8( xyU Lj

 y |J ?È2 9:  s. Ê{  Lj! 75µm8( 0.5 mm

 Lj$ [m Ùï 0 8( j$ 10%? =$M ‡ 2 r s. e%8( y |J &j 1 m? =$M ‡ 9:>.

“¸ aõ,2 ‰Š( ³?/ /y8 y  W›M ‡

2 r s. Lj$ 1 mm! xyU ™L\ Ùï Q²³?/8 y

j$ 25% ?! o<¤ ²h pGS 0 8( $I ‹ 

¦i ‡ ˆd. ‰Š( xyU Lj Ðî Ž8( $ K TvMc ÐîÎ i !¡! ‡ 2 r s.

Fig. 10Œ VÀ 60%, Lj 75µm xyU ™L1 150 kg/t-p8 ( 300 kg/t-p =$W Ùï e 8( y j y32 ŽF M Ë. xyU ™L¤ =$8 ‰Š( e0 8( U 3% j$ =$

MË9 e% ?È ¥8 1M* ’î %m ¿ô. e% Ùï y

500 cgas–

( ) cgas

---500

× 1

3--- 2

30--- cgas PCR× + ×(1–η)

× +

 

 

 

8500 86400×{ ⁄ ⁄34⁄0.3925}

Fig. 5. Difference in −−−−3 mm size fraction with various PCR, lance con- figuration and oxygen enrichment at tuyere level.

Fig. 6. The change of raceway depth and amount of fines generated with PCR.

(6)

 ‘†$ %c ¥MË. y |J W›Ý ‘†j Q² #

$á]H× 2 r s.

Fig. 11Œ þj, Lj, y ™L¤ … ˆˆ 1`5 ‡( Lj

75µm, y Of¤ 0.66 kg/m2/s(xyU 150 kg/t-p2 ü VÀ 80%W yY¤8 ú), þj 1,000 kg/m32 ü 1` ÷øMË

. þj$ 7,000 kg/m3 ¥i Ùï e0/8(  ¥$ ^9 e%8( y |J ²h %$ =$G ‡ 2 r s. Lj2 1 mm =,W Ùï e0 8( yj ¥= 4´ e%8( y

|J ‘† ?n }mc 9:9 ‡ 2 r s. yY¤

=$j Lj=$8 ‰ y |J¤ ¥ ~j8 x†m XM9 ? ú5 … x† ‡ 2 r s.

Fig. 12 ~d V, %j= 2Ö@ FEM ld V, %j

= Ðl2 9:; ‡ ’ ÙŒ *ï S †M s× 2 r s9 Ü, 8( ?ú5 Ö2 9:  s.  1.6 m348 ( V, %j A~Œ 1`J ~•M9 %j$ *ï _9 $ Ùï8

 ?ú5 Ö2 · s. ‡Œ r†B ‘5 Q`2 9a    U 50 cm( V, u‘2 ~•¸ #FM b8 U  B ‡

 ˆd. ‚5 „‹ … :Mm XM* e%?È$

Fig. 8. Calculated 2-D fines accumulation diagram in BF.

(a): at ρ=1,000 kg/m3, 0.5 mm size, FIR 0.88 kg/m2/s, η=60%, (b): at ρ=3,500 kg/m3, and (c): at ρ=7,000 kg/m3(FIR: fine injection rate, η: PC combustion efficiency, ρ: fine density).

Fig. 9. Calculated 2-D fines accumulation diagram in BF.

(a): at η=60%, 75µm size, PCR=150 kg/t-p, ρ=1,000 kg/m3, (b): at 0.5 mm size, and (c): at 1 mm size(PCR: coal injection ratio, η: PC combustion efficiency, ρ: fine density).

Fig. 10. Calculated 2-D fines accumulation diagram in BF.

(a): at PCR=150 kg/t-p, 75µm size, η=60%, ρ=1,000 kg/m3, (b): at PCR=200 kg/t-p, and (c): at PCR=300 kg/t-p(PCR: coal injection ratio, η: PC combustion efficiency, ρ: fine density).

Fig. 7. Calculated 2-D fines accumulation diagram in BF.

(a): at η=60%, 75µm size, PCR 200 kg/t-p, ρ=1,000 kg/m3, (b): at η=80%, and (c): at η=90%(PCR: coal injection ratio, η: PC com- bustion efficiency, ρ: fine density).

(7)

—G9 -bG Ùï aD ‹ E y cJ¤  ?š›

:Mm XM* ’8 ‰ y |J¤ ?n› WE2 [, … Mm X5 ‡8 !5 ˆd.

5.  

(1) + 8( FEM8  $I g ¨œy3 #F= y j8 Ð 5 ªÁ ÂÕWd(  y \ S #Fi r sV.

(2) xyU ¤ ™LW VÀ 20% 5VM ‡· Lj$ 1 mm

 =$M ‡8  y |J ‘† g j8 %c … x†c d.

(3) yY¤8 ‰ V, %j ¥ ª E r†#F8 5 - Œ V, %j$ *ï %9 JŒ Ùï2 [7M S †M Ë.

(4) yj$ &Œ mhŒ Q²³ E e% ( 20-30%2 9:

. aõ,= aõ, ³? 0/8( 10-20% y j2 9:.



di : diameter of i [m]

ek, p : repulsion factor [-]

Fr : Froude number [(Ug/eg)/(gdp)0.5]

Fi, j : interacted force between i and j [Kg/(m2s2)]

Gi : mass velocity of phase i [Kg/(m2s)]

gc : gravimetric conversion factor [1N/Kgf] g : gravimetric force [m/s2]

Ht : total hold-up of powder [Kg/m3] Hd : dynamic hold-up of powder [Kg/m3] Hs : static hold-up of powder [Kg/m3] P : pressure [Pa]

Rk : momentum through collision of powder [Kg/m3] Re : Reynolds number [dpUgρggµg]

Ui : velocity of i [m/s]

2345 67

β : correction factor of repulsion angle εkg : voidage of powder

εg : voidage of packed bed

εk : volume fraction of powder in packed bed ϕI : shape factor of powder

µi : viscosity of i [Kg/(ms)]

ρi : density of i [Kg/m3]

897

p : coke in blast furnace

g : gas

k : powder

 

1. Chung, J. K. and Hur, N. S.: ISIJ int., 37(2), 119(1997).

2. Ergun S.: Chem. Eng. Prog., 48, 89(1952).

3. Fan L. S., Toda, M. and Satija, S.: Powder Technology, 36, 107(1982).

4. Yamaoka, H.: Tetsu-to-Hagane, 72, 403(1986).

5. Yamaoka, H.: Tetsu-to-Hagane, 72, 2194(1986).

6. Kusakabe, K., Yamaki, T., Morooka, S. and Matsuyama, H.: Tetsu- to-Hagane, 77, 1407(1991).

7. Kusakabe, K., Yamaki, T. and Morooka, S.: Tetsu-to-Hagane, 77, 1413(1991).

8. Shibata, K., Shimizu, M., Inaba, S., Takahashi, R. and Yagi, J.: Tetsu- to-Hagane, 77, 236(1991).

9. Shibata, K., Shimizu, M., Inaba, S., Takahashi, R. and Yagi, J.: Tetsu-to- Hagane, 77, 1267(1991).

10. Ariyama, T. and Asakawa, Y.: Journal of Chemical Engineering of Japan, 22, 171(1996).

11. Kusakabe, K.: Report of Research Committee on Transport Phenom- ena of Four Fluids, 61(1996).

12. Yagi, J., Takeda, K. and Omori, Y.: Tetsu-to-Hagane, 66, 108(1980).

13. Jeong Park, Y. O.: Ph. D. Dissertion, University of Houston, USA(1989).

14. Chung, J. K. and Park, P. W.: HWAHAK KONGHAK, 36, 743(1998).

15. Patent of KOREA, Patent No. 1997-25769.

16. Matsui, Y.: CAMP-ISIJ, 12, 632(1999).

Fig. 11. Calculated 2-D fines accumulation diagram in BF.

(a): at 75µm size, FIR 0.66 kg/m2s(η; 80%), ρ=1,000 kg/m3, (b):

at ρ=7,000 kg/m3, (c): at 1 mm size, and (d): at FIR 0.88 kg/m2s(η;

60%)(FIR: fine injection rate, η: PC combustion efficiency, ρ: fine density).

Fig. 12. The measured and calculated raceway depth with PCR.

참조

관련 문서

A classical finite difference method for solving the Poisson equation with the Dirichlet boundary condition is the Shortley-Weller method.. It has been long known to have a

In this research, finite element analysis with material failure models and element erosion is applied to the evaluation of local and global damage of concrete overpacks under

Using the nonlinear least-square method and control volume finite element method for the heat and mass equation, we estimate the value of the parameters, the solar absorptivity

We also propose discontinuous Galerkin finite element methods to approximate the solution which is not smooth enough.. The stability of the

In this study, the finite element analysis was used to predict and obtain the material properties of the carbon fibers and the resin even if the carbon fiber laminate and the

This study was performed to confirm the effect of the stress distribution on short implant supporting bone according to horizontal bone loss using a three-dimensional

12 As such, using finite element modeling, the effect of stress distribution around the internal non-submerged type implants on marginal bone resorption

In order to simulate a thermo-mechanical behavior in the vicinity of the deposited region by a LENS process, a finite element (FE) model with a moving heat flux is developed