• 검색 결과가 없습니다.

Aspen Plus Release 12.1 Aspen Plus Release 12.1

N/A
N/A
Protected

Academic year: 2022

Share "Aspen Plus Release 12.1 Aspen Plus Release 12.1"

Copied!
25
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

DME(10 TPD) Process DME(10 TPD) Process

Simulation Simulation

Using Using

Aspen Plus Release 12.1 Aspen Plus Release 12.1

Dr. Jungho Cho, Professor

Department of Chemical Engineering

Dong Yang University

(2)

Overall

Overall Flowsheet Flowsheet for DME Production Unit for DME Production Unit

DME

ABSORBER

TO FLARE

17

19 18

DA-103

1

21

CO2

STRIPPER DA-104

EA-103 EA-107

FA-107

23

26

DME COLUMN DA-105

EA-110 EA-109

FA-109

28

31

MEOH

RECOVERY COLUMN DA-106

EA-113 EA-112

FA-110

33

(3)

Slide 3

DA-103

DA-104

DA-105

DA-106

17

18

19

21

23

26 28

33 31

DME Production Unit Simulation Using A+

DME Production Unit Simulation Using A+

(4)

Flowsheet for Toluene Recovery Process Flowsheet for Toluene Recovery Process

DME Absorber OVHD Gas Stream to Flare 18

DME Absorber BTMS Stream 19

MEOH Recovery Column BTMS Stream 33

MEOH Recovery Column OVHD Stream Recycled to DME Absorber 31

DME Column BTMS Stream 28

DME Column OVHD Stream 26

CO2 Stripper BTMS Stream 23

CO2 Stripper OVHD Gas Stream 21

DME Synthesis Reactor Outlet to DME Absorber Feed Stream 17

Description Stream

MEOH Recovery Column DA-106

DME Column DA-105

CO2 Stripper DA-104

DME Absorber DA-103

Description

Unit

(5)

Slide 5

Liquid Liquid

Liquid Liquid

Liquid Vapor

Liquid Vapor

Mixed Phase

57.8774 20.040 52.0089 16.0500 2.37E-20 1.4602 7.0841 0.0148 0.0748 0.5795 20.2310 7.2161 63.3394 18

63.7119 48.336 59.3237 33.9587 3.009E-3 72.2858 17.0556 5.7143 9.63E-04 0.0185 4.1787 0.1919 0.5511 19

14.0000 3.192 3.3619 39.5540 0.0000 3.084E-6 12.8111 3.236E-5 0.0170 0.3270 73.7331 3.3869 9.7249 21

110.2622 45.168 55.9618 33.6216 3.19E-03 76.6284 17.1306 6.0576 2.26E-15 4.34E-14 2.75E-04 8.19E-14 7.32E-14 23

46.0000 10.000 9.0580 46.0684 0.0000 2.92E-06 99.9927 5.61E-03 1.40E-14 2.68E-13 1.70E-03 5.06E-13 4.52E-13 26

42.0432 33.480 43.7177 31.9039 2.64E-16 96.1336 1.4409 2.4255 0.0000 0.0000 7.27E-12 0.0000 0.0000 31

125.8043 35.136 46.9038 31.2179 3.81E-03 91.4268 1.3430 7.2264 0.0000 0.0000 6.77E-12 0.0000 0.0000 28

1.668 34.896

Flow rate (Ton/day)

21.8041 21.5106

MW (Kg/Kmol)

89.7695 3.1860 0.0560 26.8411 0.0000 73.1028 0.0000 0.0000 0.0000 0.0000 0.0000 33

45.0000 67.6140 2.64E-03 2.3854 19.4806 3.4594 0.0584 0.4620 19.2281 5.7191 49.2044 17

MEA MEOH CH4 N2 H2O

Molar Percent H2

CO CO2

DME

Flow rate (K-mole/hr)

Temperature (oC)

Overall Material Balance

Overall Material Balance

(6)

1 1 st st Column: DA Column: DA - - 103 (DME Absorber) 103 (DME Absorber)

DME ABSORBER

TO FLARE

17

19 EA-106

18

FL-102 16

31 MEOH

DA-103

T=57.9

o

C

P=48.03Kg/cm

2

T=63.5

o

C

P=48.03Kg/cm

2

(7)

Slide 7

DME Absorber Simulation (DA

DME Absorber Simulation (DA - - 103) 103)

Primary objective of the absorber is to recovery DME as an absorber bottom product by using methanol as a

solvent.

(8)

Consider the following absorber distillation to produce a purified toluene using sulfolane as a solvent.

y Feed1: Crude Feed (Refer to feedstock characterization) y Feed2: Methanol Solvent

1) Solvent Feed Temperature: 45 o C 2) Flowrate: 67.614 K-mole/hr

y DME Absorber Column

1) Number of Theoretical Stages: 7 3) Overall Tray Efficiencies:

4) Feed Tray Location: 7

6) Solvent Feed Tray Location: 1

DME Absorber Simulation

DME Absorber Simulation Continued Continued

(9)

Slide 9

Selection of appropriate thermodynamic model for the

simulation of DME absorber using methanol as a solvent is very important.

y NRTL (Non Random Two Liquid) activity coefficient

model was chosen to explain non-ideal phase behavior of liquid mixture between H2O, DME, methanol and

MEA.

y Henry’s law option was also selected for the calculation of non-condensible supercritical gases like H2, CO,

CO2, CH4 and N2 in a liquid mixture.

DME Absorber Simulation

DME Absorber Simulation Continued Continued

(10)

Material Balance Around DA

Material Balance Around DA - - 103 103

48.0330 57.8774 20.040 52.0089 16.0500 2.37E-20 1.4602 7.0841 0.0148 0.0748 0.5795 20.2310 7.2161 63.3394 Vapor 18

48.0330 63.7119 48.336 59.3237 33.9587 3.009E-3 72.2858 17.0556 5.7143 9.63E-04 0.0185 4.1787 0.1919 0.5511 Liquid 19

1.333 42.0432 33.480 43.7177 31.9039 2.64E-16 96.1336 1.4409 2.4255 0.0000 0.0000 7.27E-12 0.0000 0.0000 Liquid 31

52.0330 45.0000 34.896 67.6140 21.5106 2.64E-03 2.3854 19.4806 3.4594 0.0584 0.4620 19.2281 5.7191 49.2044 Mixed 17

Flow rate (Ton/day) MW (Kg/Kmole) Phase

MEA MEOH CH4 N2 H2O

Molar Percent H2

CO CO2

DME

Flow rate (K-mole/hr)

Pressure (Kg/cm

2

)

Temperature (

o

C)

(11)

Slide 11

2 2 nd nd Column: DA Column: DA - - 104 (CO2 Stripper) 104 (CO2 Stripper)

19

21

CO2 STRIPPER DA-104

EA-108 EA-107

FA-107

23

61.6

o

C

22.33Kg/cm

2

98.5.6

o

C 22.63Kg/cm

2

14.0

o

C

23.03Kg/cm

2

96.6x10

3

Kca/hr

165x10

3

Kca/hr

(12)

CO2 Stripper Simulation CO2 Stripper Simulation

Primary objective of the CO2 Stripper is to strip CO2

dissolved in the liquid feed stream at column top product.

(13)

Slide 13

Selection of appropriate thermodynamic model for the

simulation of DME absorber using methanol as a solvent is very important.

y NRTL (Non Random Two Liquid) activity coefficient

model was chosen to explain non-ideal phase behavior of liquid mixture between H2O, DME, methanol and

MEA.

y Henry’s law option was also selected for the calculation of non-condensible supercritical gases like H2, CO,

CO2, CH4 and N2 in a liquid mixture.

CO2 Stripper Simulation

CO2 Stripper Simulation Continued Continued

(14)

Material Balance Around CO2 Stripper Material Balance Around CO2 Stripper

48.0330 63.7119 48.336 59.3237 33.9587 3.009E-3 72.2858 17.0556 5.7143 9.63E-04 0.0185 4.1787 0.1919 0.5511 Liquid 19

22.0330 14.0000 3.192 3.3619 39.5540 0.0000 3.084E-6 12.8111 3.236E-5 0.0170 0.3270 73.7331 3.3869 9.7249 Vapor 21

22.6330 110.2622 45.168 55.9618 33.6216 3.19E-03 76.6284 17.1306 6.0576 2.26E-15 4.34E-14 2.75E-04 8.19E-14 7.32E-14 Liquid 23

Pressure (Kg/cm

2

) Temperature (

o

C) Flow rate (Ton/day) Flow rate (K-mole/hr) MW (Kg/Kmole)

MEOH MEA DME H2O N2 CH4 CO2 CO H2

Molar Percent

Phase

(15)

Slide 15

3 3 rd rd Column: DA Column: DA - - 105 (DME Column) 105 (DME Column)

23

26

DME COLUMN DA-105

EA-110 EA-109

FA-109

28

87.0

o

C

11.33Kg/cm

2

48.2

o

C

11.03Kg/cm

2

127x10

3

Kca/hr

46.0

o

C

10.83Kg/cm

2

129.4x10

3

Kca/hr

(16)

DME Column Simulation DME Column Simulation

Primary objective of the DME column is to recovery DME

as a top product.

(17)

Slide 17

Consider the following DME column to obtain a purified DME as a top product.

y Feed: CO2 Stripper Bottom Stream (Refer to feedstock characterization)

1) DME Product Purity = 99.9 by mole % y DME Column

1) Number of Theoretical Stages: 20

3) Overall Tray Efficiencies: Can by estimated by correlation 4) Feed Tray Location: 11

DME Column Simulation

DME Column Simulation Continued Continued

(18)

Selection of appropriate thermodynamic model for the simulation of DME Column is very important.

y NRTL (Non Random Two Liquid) activity coefficient

model was chosen to explain non-ideal phase behavior of liquid mixture between H2O, DME, methanol and

MEA.

y Henry’s law option was also selected for the calculation of non-condensible supercritical gases like H2, CO,

CO2, CH4 and N2 in a liquid mixture.

DME Column Simulation

DME Column Simulation Continued Continued

(19)

Slide 19

Material Balance Around DA

Material Balance Around DA - - 105 105

22.6330 110.2622 45.168 55.9618 33.6216 3.19E-03 76.6284 17.1306 6.0576 2.26E-15 4.34E-14 2.75E-04 8.19E-14 7.32E-14 Liquid 23

10.8330 46.0000 10.000 9.0580 46.0684 0.0000 2.92E-06 99.9927 5.61E-03 1.40E-14 2.68E-13 1.70E-03 5.06E-13 4.52E-13 Liquid 26

11.0330 125.8043 35.136 46.9038 31.2179 3.81E-03 91.4268 1.3430 7.2264 0.0000 0.0000 6.77E-12 0.0000 0.0000 Liquid 28

Pressure (Kg/cm

2

) Temperature (

o

C) Flow rate (Ton/day) Flow rate (K-mole/hr) MW (Kg/Kmole)

MEOH MEA DME H2O N2 CH4 CO2 CO H2

Molar Percent

Phase

(20)

4 4 th th Column: DA Column: DA - - 106 (MEOH Recovery Column) 106 (MEOH Recovery Column)

28

31

MEOH Recovery COLUMN DA-106

EA-113 EA-112

FA-110

33

75.4

o

C

1.53Kg/cm

2

81.3

o

C

1.83Kg/cm

2

42

o

C

1.33Kg/cm

2

469.4x10

3

Kcal/hr

382.4x10

3

Kcal/hr

(21)

Slide 21

MEOH Recovery Column Simulation MEOH Recovery Column Simulation

Primary objective of the MEOH Recovery Column is to

recovery MEOH as a top product.

(22)

Consider the following MEOH Recovery Column to recover methanol stream as a top product.

y Feed: DME Column BTMS Stream (Refer to feedstock characterization)

1) Methanol Purity at Column Top: > 94 mole%

y MEOH Column

1) Number of Theoretical Stages: 20

3) Overall Tray Efficiencies: Can be Estimated by Correlation 4) Feed Tray Location: 11

MEOH Recovery Column Simulation

MEOH Recovery Column Simulation Continued Continued

(23)

Slide 23

Selection of appropriate thermodynamic model for the

simulation of MEOH Recovery Column is very important.

y NRTL (Non Random Two Liquid) activity coefficient

model was chosen to explain non-ideal phase behavior of liquid mixture between H2O, DME, methanol and

MEA.

y Henry’s law option was also used for the calculation of noncondensible supercritical gases in a mixed solvent.

MEOH Recovery Column Simulation

MEOH Recovery Column Simulation Continued Continued

(24)

11.0330 125.8043 35.136 46.9038 31.2179 3.81E-03 91.4268 1.3430 7.2264 0.0000 0.0000 6.77E-12 0.0000 0.0000 Liquid 28

42.0432 33.480 43.7177 31.9039 2.64E-16 96.1336 1.4409 2.4255 0.0000 0.0000 7.27E-12 0.0000 0.0000 Liquid 31

1.5330 89.7695 1.668 3.1860 21.8041 0.0560 26.8411 0.0000 73.1028 0.0000 0.0000 0.0000 0.0000 0.0000 Liquid 33

Pressure (Kg/cm

2

) Temperature (

o

C) Flow rate (Ton/day) Flow rate (K-mole/hr) MW (Kg/Kmole)

MEOH MEA DME H2O N2 CH4 CO2 CO H2

Molar Percent Phase

Material Balance Around DA

Material Balance Around DA - - 106 106

(25)

Slide 25

The End

The End … … . .

참조

관련 문서

Randomised comparison of fluorouracil, epidoxorubicin and methotrexate (FEMTX) plus supportive care with supportive care alone in patients with non-resectable

Key Words: Carbon tax, labor migration, tax regime, welfare effect, fossil fuel demand, computable general equilibrium model, double dividend hypothesis..

『기상기술정책』지는 범정부적인 기상·기후 분야의 정책 수요에 적극적으로 부응하고, 창의적인 기상기술 혁신을 위한 전문적인 연구 조사를 통해 기상·기후업무 관련

에너지 자원분야에서는 현재 각 기관 구축된 자료의 공유 활성화 및 활용 기술 개발을 중점적으로 추진할 필요가 있다 활용할 경우 중복투자 방지를 통한 비용 손실을 줄

최근 해양 분야에서 관심이 높아지고 있는 해양의 변화는 해양 산성화(acidification)이다. 인위적으로 증가된 이산화탄소가 해양에 흡수 저장되면서 화 학적

― 미래형 융합교육을 위한 학교에 대한 영역별·단계별 선도 모델을 체계화함... 선도모델

[r]

In conclusion, the growth and yield of potato was not different between mixed fertilizer(chemical fertilizer : liquid pig manure = 1:1) and the