• 검색 결과가 없습니다.

While Iqbal Khan and Khurshid [20] gave several Hermite-Hadamard type in- equalities for convex functions via generalized fractional integrals

N/A
N/A
Protected

Academic year: 2022

Share "While Iqbal Khan and Khurshid [20] gave several Hermite-Hadamard type in- equalities for convex functions via generalized fractional integrals"

Copied!
13
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

https://doi.org/10.5831/HMJ.2020.42.4.653

FRACTIONAL INEQUALITIES FOR SOME EXPONENTIALLY CONVEX FUNCTIONS

Naila Mehreen and Matloob Anwar

Abstract. In this paper, we establish new integral inequalities via Riemann-Liouville fractional integrals and Katugampola fractional integrals for the class of functions whose derivatives in absolute value are exponentially convex functions and exponentially s-convex functions in the second sense.

1. Introduction

Study of generalized convex functions is important due to its signif- icant application in integral inequalities. On the other hand, fractional integrals also play role in the advancement of integral inequalities.

The Hermite-Hadamard inequality [9, 8] for a convex function F : H → R on an interval H is defined by

(1) F h1+ h2

2



≤ 1

h2− h1 Z h2

h1

F (g)dg ≤ F (h1) + F (h2)

2 ,

for all h1, h2 ∈ H with h1 < h2. Inequality (1) is then proved for other generalized convex functions, for instance Du [7], Khan [14, 15] and Khurshid [19] proved several inequalities for generalized convex func- tions. Also see [1, 3, 5, 6, 24, 23]. While Iqbal [10, 11, 12], Khan [16, 17, 18] and Khurshid [20] gave several Hermite-Hadamard type in- equalities for convex functions via generalized fractional integrals.

Awan et al. [1] introduced following new class of convex functions.

Received January 14, 2020. Revised August 19, 2020. Accepted August 25, 2020.

2010 Mathematics Subject Classification. 26A51, 26D07, 26D10, 26D15.

Key words and phrases. exponentially convex function, exponentially s-convex function, Riemann-Liouville fractional integrals, Katugampola fractional integrals.

The present investigation is supported by the National University of Sciences and Technology (NUST), Islamabad, Pakistan..

*Corresponding author

(2)

Definition 1.1 ([1]). A function F : H ⊆ R → R is called exponen- tially convex, if

(2) F (uh1+ (1 − u)h2) ≤ uF (h1)

eβh1 + (1 − u)F (h2) eβh2 ,

for all h1, h2 ∈ H, u ∈ [0, 1] and β ∈ R. If the inequality (2) is in reversed order then F is called exponentially concave.

Mehreen and Anwar [24] introduced another class of functions called exponentially s-convex in second sense.

Definition 1.2 ([24]). Let s ∈ (0, 1] and H ⊂ R0 be an interval. A function F : H → R is called exponentially s-convex in the second sense, if

(3) F (uh1+ (1 − u)h2) ≤ usF (h1)

eβh1 + (1 − u)sF (h2) eβh2 ,

for all h1, h2 ∈ H, u ∈ [0, 1] and β ∈ R. If (3) is in reversed order then F is called exponentially s-concave.

Example 1.3. A function F : [0, ∞) → R, defined by F(g) = ln(g) for s ∈ (0, 1) is an exponentially s-convex, for all β ≤ −1.

Definition 1.4 ([21]). Let F ∈ L[h1, h2]. The right-hand side and left-hand side Riemann- Liouville fractional integrals Jhα1+F and Jhα

2F of order α > 0 with h2 > h1≥ 0 are defined by

Jhα1+F (g) = 1 Γ(α)

Z g h1

(g − t)α−1F (t)dt, g > h1, and

Jhα2F (g) = 1 Γ(α)

Z h2

g

(t − g)α−1F (t)dt, g < h2,

respectively, where Γ(·) is the Gamma function defined by Γ(α) = R

0 e−ttα−1dt.

In [25] and [26], authors proved the following identity via Riemann- Liouville fractional integrals.

Lemma 1.5 ([25]). Consider a differentiable mapping F : [h1, h2] ⊂ R+→ R on (h1, h2) with h1 < h2. Then the following equality holds:

(4) F (h1) + F (h2)

2 − Γ(α + 1)

2(h2− h1)αJhα

1+F (hρ2) + Jhα2F (h1)

= h2− h1 2

Z 1 0

[(1 − u)α− uα] F0(uh1+ (1 − u)h2)du.

(3)

Definition 1.6 ([13]). Let [h1, h2] ⊂ R be a finite interval. Then, the left- and right-side Katugampola fractional integrals of order α(> 0) of F ∈ Xvp(h1, h2) are defined by,

ρIhα1+F (g) = ρ1−α Γ(α)

Z g h1

(gρ− tρ)α−1tρ−1F (t)dt, and

ρIhα2F (g) = ρ1−α Γ(α)

Z h2

g

(tρ− gρ)α−1tρ−1F (t)dt,

with h1 < g < h2 and ρ > 0. Where Xvp(h1, h2) (v ∈ R, 1 ≤ p ≤ ∞ ) is the space of those complex valued Lebesgue measurable functions F on [h1, h2] for which kF kXvp < ∞, where the norm is defined by,

kF kXp

v =

Z h2

h1

|tvF (t)|pdt t

1/p

< ∞, for 1 ≤ p < ∞, u ∈ R and for the case p = ∞,

kF kX

v = ess suph1≤t≤h2[tu|F (t)|].

Where ess sup stands for essential supremum.

Chen and Katugampola [2] proved following generalized version of Lemma 1.5.

Lemma 1.7 ([2]). Let α > 0 and ρ > 0. Consider a differentiable mapping F : [hρ1, hρ2] ⊂ R+→ R on (hρ1, hρ2) with 0 ≤ h1 < h2. Then the following equality holds if the fractional integrals exist:

(5) F (hρ1) + F (hρ2)

2 −αραΓ(α + 1) 2(hρ2− hρ1)α

ρ

Ihα1+F (hρ2) +ρIhα2F (hρ1)

= hρ2− hρ1 2

Z 1 0

[(1 − uρ)α− (uρ)α] uρ−1F0(uρhρ1+ (1 − uρ)hρ2)du.

2. Inequalities via Riemann-Liouville fractional integrals In this section we find inequalities using Riemann-Liouville fractional integrals.

Theorem 2.1. Consider a differentiable mapping F : H → R on H and h1, h2 ∈ H with h1 < h2 and F0 ∈ L1[h1, h2]. If |F0|q, for q ≥ 1, is

(4)

exponentially convex on [h1, h2], then the following inequality holds:

F (h1) + F (h2)

2 − Γ(α + 1)

2(h2− h1)αJhα1+F (hρ2) + Jhα2F (h1)

≤ h2− h1 21q(α + 1)

 1 − 1

2α

 

F0(h1) eβh1

q

+

F0(h2) eβh2

q1q . (6)

Proof. Suppose q = 1. Using Lemma 1.5 and exponential convexity of |F0|, we get

F (h1) + F (h2)

2 − Γ(α + 1)

2(h2− h1)αJhα1+F (hρ2) + Jhα2F (h1)

=

h2− h1 2

Z 1 0

[(1 − u)α− uα] F0(uh1+ (1 − u)h2)du

≤ h2− h1 2

Z 1 0

|(1 − u)α− uα||F0(uh1+ (1 − u)h2)|du

≤ h2− h1 2

Z 1 0

|(1 − u)α− uα|

 u

F0(h1) eβh1

+ (1 − u)

F0(h2) eβh2



=h2− h1 2

 Z 1/2 0

[(1 − u)α− uα]

 u

F0(h1) eβh1

+ (1 − u)

F0(h2) eβh2



+ Z 1

1/2

[uα− (1 − u)α]

 u

F0(h1) eβh1

+ (1 − u)

F0(h2) eβh2

  . (7)

Since Z 1/2

0

u(1−u)αdu−

Z 1/2 0

uα+1du = Z 1

1/2

uα(1−u)du−

Z 1 1/2

(1−u)α+1du

= 1

(α + 1)(α + 2)−

1 2α+1

α + 1, (8)

and Z 1/2

0

(1−u)α+1du−

Z 1/2 0

uα(1−u)du = Z 1

1/2

uα+1du − Z 1

1/2

u(1−u)αdu

= 1

α + 2 −

1 2α+1

α + 1. (9)

Thus by using (8) and (9) in (7), we get (6) for q = 1. Now let q > 1.

Using power mean inequality on Lemma 1.5 and exponential convexity

(5)

of |F0|q, we obtain

F (h1) + F (h2)

2 − Γ(α + 1)

2(h2− h1)αJhα

1+F (hρ2) + Jhα2F (h1)

=

h2− h1 2

Z 1

0

[(1 − u)α− uα] F0(uh1+ (1 − u)h2)du

≤ h2− h1 2

Z 1 0

|(1 − u)α− uα||F0(uh1+ (1 − u)h2)|du

≤ h2− h1 2

Z 1 0

|(1 − u)α− uα|du

1−1q

Z 1 0

|(1 − u)α− uα||F0(uh1+ (1 − u)h2)|qdu

1q

= h2− h1 21q(α + 1)

 1 − 1

2α

 

F0(h1) eβh1

q

+

F0(h2) eβh2

q1q . (10)

Since Z 1

0

|(1 − u)α− uα|du = Z 1/2

0

[(1 − u)α− uα]du + Z 1

1/2

[uα− (1 − u)α]du

= 2

α + 1

 1 − 1

2α

 .

This completes the proof.

Remark 2.2. In Theorem 2.1.

(1) By letting β = 0, then the inequality (6) for q = 1 becomes the inequality (3.5) of Theorem 3 in [25].

(2) By letting β = 0 and α = 1, then the inequality (6) with q = 1 becomes the inequality 2.3 of Theorem 2.2 in [4].

Now we prove inequality for exponentially s-convex function in second sense as follows:

Theorem 2.3. Consider a differentiable mapping F : H ⊆ (0, ∞) → R on H and h1, h2 ∈ H with h1 < h2 and F0 ∈ L1[h1, h2]. If |F0|q, for q ≥ 1, is exponentially s-convex in second sense on [h1, h2], then the

(6)

following inequality holds:

F (h1) + F (h2)

2 − Γ(α + 1)

2(h2− h1)α Jhα1+F (hρ2) + Jhα2F (h1)

≤ h2− h1 2(α + 1)

 2 α + 1

 1 − 1

2α

1−1q 

F0(h1) eβh1

q

+

F0(h2) eβh2

q1q

×

 B(1

2; s + 1, α + 1) − B(1

2; α + 1, s + 1) + 2α+s− 1 2α+s(α + s + 1)

 . (11)

Where Bv is an incomplete beta function defined by Bv(h1, h2) = Rv

0 th1−1(1 − t)h2−1dt, v ∈ (0, 1).

Proof. Suppose q = 1. Using Lemma 1.5 and exponential s-convexity of |F0|, we get

F (h1) + F (h2)

2 − Γ(α + 1)

2(h2− h1)αJhα1+F (hρ2) + Jhα2F (h1)

=

h2− h1 2

Z 1 0

[(1 − u)α− uα] F0(uh1+ (1 − u)h2)du

≤ h2− h1 2

Z 1 0

|(1 − u)α− uα||F0(uh1+ (1 − u)h2)|du

≤ h2− h1 2

Z 1 0

|(1 − u)α− uα|

 us

F0(h1) eβh1

+ (1 − u)s

F0(h2) eβh2



= ≤ h2− h1 2

 Z 1/2 0

[(1 − u)α− uα]

 us

F0(h1) eβh1

+ (1 − u)s

F0(h2) eβh2



+ Z 1

1/2

[uα− (1 − u)α]

 us

F0(h1) eβh1

+ (1 − u)s

F0(h2) eβh2

  . (12)

Since (13)

Z 1/2 0

us(1 − u)αdu = Z 1

1/2

uα(1 − u)sdu = B(1

2; s + 1, α + 1),

(14)

Z 1/2 0

uα(1 − u)sdu = Z 1

1/2

us(1 − u)αdu = B(1

2; α + 1, s + 1),

(15)

Z 1/2 0

uα+sdu = Z 1

1/2

(1 − u)α+sdu = 1

2s+α+1(s + α + 1),

(7)

and (16)

Z 1/2 0

(1 − u)α+sdu = Z 1

1/2

uα+sdu = 1

s + α + 1 − 1

2s+α+1(s + α + 1). Thus by using (13)∼(16) in (12), we get

F (h1) + F (h2)

2 − Γ(α + 1)

2(h2− h1)α Jhα

1+F (hρ2) + Jhα2F (h1)

≤ h2− h1 2



F0(h1) eβh1

+

F0(h2) eβh2



×

 B(1

2; s + 1, α + 1) − B(1

2; α + 1, s + 1) + 2α+s− 1 2α+s(α + s + 1)

 . (17)

Now let q > 1. Using power mean inequality on Lemma 1.5 and exponential s-convexity of |F0|q, we obtain

F (h1) + F (h2)

2 − Γ(α + 1)

2(h2− h1)αJhα

1+F (hρ2) + Jhα2F (h1)

=

h2− h1 2

Z 1 0

[(1 − u)α− uα] F0(uh1+ (1 − u)h2)du

≤ h2− h1 2

Z 1 0

|(1 − u)α− uα||F0(uh1+ (1 − u)h2)|du

≤ h2− h1 2

Z 1 0

|(1 − u)α− uα|du

1−1q

Z 1 0

|(1 − u)α− uα||F0(uh1+ (1 − u)h2)|qdu

1q

= h2− h1 2(α + 1)

 2 α + 1

 1 − 1

2α

1−1q 

F0(h1) eβh1

q

+

F0(h2) eβh2

q1q

×

 B(1

2; s+1, α+1) − B(1

2; α+1, s+1)+ 2α+s− 1 2α+s(α+s+1)

 . (18)

Since Z 1

0

|(1 − u)α− uα|du = Z 1/2

0

[(1 − u)α− uα]du + Z 1

1/2

[uα− (1 − u)α]du

= 2

α + 1

 1 − 1

2α

 .

(8)

This completes the proof.

Remark 2.4. In Theorem 2.3.

(1) By letting β = 0, then the inequality (11) becomes the inequality (2.5) of Theorem 4 in [26].

(2) By letting β = 0 and α = 1, then the inequality (11) with q = 1 becomes the inequality of Theorem 1 in [22].

3. Inequalities via Katugampola fractional integrals First we prove the result for exponentially convex functions.

Theorem 3.1. Let α > 0, ρ > 0. Consider a differentiable mapping F : [hρ1, hρ2] → R on (hρ1, hρ2) with hρ1 < hρ2 and F0 ∈ L1[hρ1, hρ2]. If |F0| is exponentially convex on [hρ1, hρ2], then the following inequality holds:

F (hρ1) + F (hρ2)

2 −αραΓ(α + 1) 2(hρ2− hρ1)α

ρ

Ihα1+F (hρ2) + ρIhα2F (hρ1)

≤ hρ2− hρ1 2ρ(α + 1)

 1 − 1

2α

 

F0(hρ1) eβhρ1

+

F0(hρ2) eβhρ2

 . (19)

Proof. Using Lemma 1.7 and exponential convexity of |F0|, we get

F (hρ1) + F (hρ2)

2 −αραΓ(α + 1) 2(hρ2− hρ1)α

ρ

Ihα1+F (hρ2) +ρIhα2F (hρ1)

=

hρ2− hρ1 2

Z 1 0

[(1 − uρ)α− (uρ)α] uρ−1F0(uρhρ1+ (1 − uρ)hρ2)du

≤ hρ2− hρ1 2

Z 1 0

uρ−1|(1 − uρ)α− (uρ)α||F0(uρhρ1+ (1 − uρ)hρ2)|du

≤ hρ2− hρ1 2

Z 1

0

uρ−1|(1−uρ)α−(uρ)α|

 uρ

F0(hρ1) eβhρ1

+(1−uρ)

F0(hρ2) eβhρ2



= hρ2−hρ1 2

 Z 1/ρ 2 0

uρ−1[(1−uρ)α−uρα]

 uρ

F0(hρ1) eβhρ1

+(1−uρ)

F0(hρ2) eβhρ2



+ Z 1

1/ρ 2

uρ−1[uρα− (1 − uρ)α]

 uρ

F0(hρ1) eβhρ1

+ (1 − uρ)

F0(hρ2) eβhρ2

  . (20)

(9)

Since

Z 1/ρ 2 0

uρ−1uρ(1 − uρ)αdu − Z 1/ρ

2 0

uρ−1uρ(α+1)du

= Z 1

1/ρ 2

uρ−1uρα(1 − uρ)du − Z 1

1/ρ 2

uρ−1(1 − uρ)α+1du

= 1 ρ

"

1

(α + 1)(α + 2) −

1 2α+1

(α + 1)

# , (21)

and

Z 1/ρ 2 0

uρ−1(1 − uρ)α+1du − Z 1/ρ

2 0

uρ−1uρα(1 − uρ)du

= Z 1

1/ρ 2

uρ−1uρ(α+1)du − Z 1

1/ρ 2

uρ−1uρ(1 − uρ)αdu

= 1 ρ

"

1 (α + 2) −

1 2α+1

(α + 1)

# . (22)

Thus by using (21) and (22) in (20), we get (19).

Remark 3.2. In Theorem 3.1. By letting β = 0, then the inequality (19) becomes the inequality (17) of Theorem 2.5 in [2].

Theorem 3.3. Let α > 0, ρ > 0. function F : [hρ1, hρ2] ⊆ (0, ∞) → R on (hρ1, hρ2) with hρ1 < hρ2 and F0 ∈ L1[hρ1, hρ2]. If |F0| is exponentially s-convex in second sense on [hρ1, hρ2], then the following inequality holds:

F (hρ1) + F (hρ2)

2 −αραΓ(α + 1) 2(hρ2− hρ1)α

ρ

Ihα1+F (hρ2) + ρIhα2F (hρ1)

≤ hρ2− hρ1 2ρ(α + 1)



F0(hρ1) eβhρ1

+

F0(hρ2) eβhρ2



×

 B(1

2; s + 1, α + 1) − B(1

2; α + 1, s + 1) + 2α+s− 1 2α+s(α + s + 1)

 . (23)

Where Bv is an incomplete beta function defined by Bv(h1, h2) = Rv

0 th1−1(1 − t)h2−1dt, v ∈ (0, 1).

(10)

Proof. Using Lemma 1.7 and exponential s-convexity of |F0|, we get

F (hρ1) + F (hρ2)

2 −αραΓ(α + 1) 2(hρ2− hρ1)α

ρ

Ihα1+F (hρ2) +ρIhα2F (hρ1)

=

hρ2− hρ1 2

Z 1 0

[(1 − uρ)α− (uρ)α] uρ−1F0(uρhρ1+ (1 − uρ)hρ2)du

≤ hρ2− hρ1 2

Z 1 0

uρ−1|(1 − uρ)α− (uρ)α||F0(uρhρ1+ (1 − uρ)hρ2)|du

≤ hρ2− hρ1 2

Z 1 0

uρ−1|(1−uρ)α−(uρ)α|

 uρs

F0(hρ1) eβhρ1

+(1−uρ)s

F0(hρ2) eβhρ2



= hρ2−hρ1 2

Z 1/ρ 2 0

uρ−1[(1−uρ)α−uρα]

 uρs

F0(hρ1) eβhρ1

+(1−uρ)s

F0(hρ2) eβhρ2



+ Z 1

1/ρ 2

uρ−1[uρα− (1 − uρ)α]

 uρs

F0(hρ1) eβhρ1

+ (1 − uρ)s

F0(hρ2) eβhρ2

  . (24)

Since

Z 1/ρ 2 0

uρ−1uρs(1 − uρ)αdτ = Z 1

1/ρ 2

uρ−1uρα(1 − uρ)sdu

= 1 ρB(1

2; s + 1, α + 1), (25)

Z 1/ρ 2 0

uρ−1uρα(1 − uρ)sdτ = Z 1

1/ρ 2

uρ−1uρs(1 − uρ)αdu

= 1 ρB(1

2; α + 1, s + 1), (26)

Z 1/ρ 2 0

uρ−1uρ(α+s)du = Z 1

1/ρ 2

uρ−1(1 − uρ)α+sdu

= 1 ρ

1

2s+α+1(s + α + 1), (27)

(11)

and

Z 1/ρ 2 0

uρ−1(1 − uρ)α+sdu = Z 1

1/ρ 2

uρ−1uρ(α+s)du

= 1 ρ

 1

s + α + 1 − 1

2s+α+1(s + α + 1)

 . (28)

Thus by using (25)∼(28) in (24), we get (23).

Corollary 3.4. In Theorem 3.3. By letting β = 0, we get

F (hρ1) + F (hρ2)

2 −αραΓ(α + 1) 2(hρ2− hρ1)α

ρ

Ihα1+F (hρ2) + ρIhα2F (hρ1)

≤ hρ2− hρ1 2ρ(α + 1)

 F0(hρ1) +

F0(hρ2)



×

 B(1

2; s + 1, α + 1) − B(1

2; α + 1, s + 1) + 2α+s− 1 2α+s(α + s + 1)

 . (29)

References

[1] M. U. Awan, M. A. Noor and K. I Noor, Hermite–Hadamard inequalities for exponentially convex functions, Appl. Math. info. Sci., 12(2) (2018), 405–409.

[2] H. Chen and U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard- Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446(2) (2017), 1274–1291.

[3] F. Chen and S. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 705–716.

[4] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiab lemappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett. 11 (1998) 91–95.

[5] S. S. Dragomir and S. Fitzpatrick, The Hadamard’s inequality for s-convex func- tions in the second sense, Demonstratio Math., 32 (1999), 687–696.

[6] S. S. Dragomir, J. Peˇcari´c and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.

[7] TS. Du, H. Wang, M. A. Khan and Y. Zhang, Certain integral inequalities con- sidering generalized m-convexity on fractal sets and their applications, Fractals, 27(7) (2019) 1950117, 17 pages.

[8] J. Hadamard, ´Etude sur les propri´et´es des fonctions enti`eres et en particulier d’une fonction consid´er´ee par Riemann, J. Math. Pures Appl., (1893), 171–215.

[9] Ch. Hermite, Sur deux limites d’une in´tegrale ´denie, Mathesis., 3 (1883), 82.

(12)

[10] A. Iqbal, M. A. Khan, S. Ullah, and YM. Chu, Some new Hermite-Hadamard type inequalities associated with conformable fractional integrals and their appli- cations, J. Func. Spaces, 2020 (2020), 18 pages.

[11] A. Iqbal, M. A. Khan, M. Suleman and YM. Chu, The right Riemann-Liouville fractional Hermite-Hadamard type inequalities derived from Green’s function, AIP Advances 10, (2020).

[12] A. Iqbal, M. A. Khan, S, Ullah, YM. Chu and A. Kashuri, Hermite-Hadamard type inequalities pertaining conformable fractional integrals and their applica- tions, AIP advances 8, (2018), 1–18.

[13] U. N. Katugampola, New approach to generalized fractional derivatives, Bull.

Math. Anal. Appl., 6(4) (2014), 1–15.

[14] M. A. Khan, Y. Khurshid and YM. Chu, Hermite-Hadamard type inequalities via the montgomery identity, Commun. Math. Appl., 10(1) (2019), 85–97.

[15] M. A. Khan, N. Mohammad, E. R. Nwaeze and YM. chu, Quantum Hermite- Hadamard inequality by means of a green function, Adv. Diff. Equ., 2020:99 (2020), 20 pages.

[16] M. A. Khan, YM. Chu, Y. Khurshid, R. Liko and G. Ali, New Hermite-Hadamard inequalities for conformable fractional integrals, J. Func. Spaces, 2018 (2018), 9 pages.

[17] M. A. Khan, A. Iqbal, M. Suleman and Y. M. Chu, Hermite-Hadamard type inequalities for fractional integrals via green function, J. Inequal. Appl., 2018:161 (2018), 15 pages.

[18] M. A. Khan, Y. Khurshid, TS. Du and Y. M. Chu, Generalization of Hermite- Hadamard type inequalities via conformable fractional integrals, J. Func. Spaces, 2018 (2018), 12 pages.

[19] Y. Khurshid, M. A. Khan, YM. Chu and Z. A. Khan, Hermite-Hadamard-Fej ’er inequalities for conformable fractional integrals via preinvex functions, J. Func.

Spaces, 2019 (2019), 9 pages.

[20] Y. Khurshid, M. A. Khan and YM. Chu, Generalized inequalities via GG- convexity and GA-convexity, J. Func. Spaces, 2019 (2019), 8 pages.

[21] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential equations, Amsterdam: Elsevier Science, 2006.

[22] U. S. Kirmaci, M. K. Bakula, M. E. ¨Ozdemir and J. Peˇcari´c, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (2007), 26–35.

[23] C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications. A Contemporary Approach, 2 Eds., New York: Springer, 2018.

[24] N. Mehreen and M. Anwar, Hermite-Hadamard type inequalities via exponentially p-convex functions and exponentially s-convex functions in second sense with applications, J. Inequal. Appl., 2019:92 (2019).

[25] M. Z. Sarikaya, E. Set, H. Yaldiz and N. Ba¸sak, Hermite-Hadamard’s inequlities for fractional integrals and related fractional inequalitis, Math. Comput. Mod- elling, 57 (2013), 2403–2407.

[26] E. Set, M. Z. Sarikaya, M. E. ¨Ozdemir and H. Yildirim The Hermite–Hadamard’s inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inform., 10(2) (2014), 69–83.

(13)

Naila Mehreen

School of Natural Sciences,

National University of Sciences and Technology, Sector H-12 Islamabad, Pakistan.

E-mail: nailamehreen@gmail.com Matloob Anwar

School of Natural Sciences,

National University of Sciences and Technology, Sector H-12 Islamabad, Pakistan.

E-mail: matloob t@yahoo.com

참조

관련 문서

Khan, q-Analogue shift operators and pseudo-polynomials of fractional order, communicated for

In this paper our aim is to establish some geometric properties (like starlikeness, convexity and close-to-convexity) for the generalized and normalized Dini functions.. In

[5] introduced the concept of α-type F -contractive mappings and gave relevance to fixed point and periodic point theorems, as well as an application to

The integral (here a volume integral) of a derivative (here the divergence) is given by the value of the function at the boundaries (surface). If v represents the flow

Also we give applications of our results to certain functions defined through convolution (or Hadamard product) and in particular we consider the class M λ,µ m,α,γ (φ)

In this paper, we investigate the Hyers–Ulam–Rassias stability of generalized Jensen type quadratic functional equations in Banach spaces.. Ulam [1] gave a talk before

We establish two fascinating integral formulas, which are explicitly writ- ten in terms of Srivastava and Daust functions, by introducing product of generalized Bessel

In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present two general- ized integral formulas involving a