• 검색 결과가 없습니다.

(1)Journal of the Korean Glaucoma Society

N/A
N/A
Protected

Academic year: 2021

Share "(1)Journal of the Korean Glaucoma Society "

Copied!
10
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)Journal of the Korean Glaucoma Society 2017;6(2):39-48. Original Article. ࡻௐ੭‫૲ڂ‬੥३ӄࣼ੭௖࡚ࣴਁઅഡ‫ֳפ‬ણઅӴ૒હԞ‫؟‬હࣛӚӚӆ Structure-function Relationship in Glaucoma Assessed Using Nasal Peripapillary Retinal Nerve Fiber Layer Thickness Measurements 유은주, 유정권, 김용연 Eunjoo Yoo, MD1, Chungkwon Yoo, MD, PhD2, Yong Yeon Kim, MD, PhD2 ᮁ฾ᦩŝ᮹ᬱ Łಅ‫⦺ݡ‬Ʊ᮹ŝ‫ᦩ⦺ݡ‬ŝ⦺Ʊᝅ 1. Yoo-mang Eye Clinic, Seoul, Korea Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea. 2. Purpose: To evaluate the structure-function relationships using the average retinal nerve fiber layer thickness (RNFLT) and the nasal RNFLT in primary open-angle glaucoma (OAG) patients. Methods: This retrospective study included 283 OAG patients and 44 normal controls. The average RNFLT was defined as the mean of the 360° of peripapillary RNFLT, and the nasal RNFLT as the average of the peripapillary RNFLT from 1 o’clock to 5 o’clock directions. The structure-function relationships between the average or nasal RNFLT and the mean deviation (MD) of corresponding visual field (VF) were assessed by regression analyses. The R package named ‘segmented’ was used to investigate whether there was a statistically significant breakpoint. Results: The relationship between the MD and the average RNFLT was better explained in glaucoma patients by a second-order polynomial regression model than a linear model (both p < 0.001, adjusted-R 2 = 0.646 and R 2 = 0.623, respectively). The MD value of -16.29 dB was identified as the significant breakpoint. For the nasal RNFLT, a second-order polynomial model did not fit better than the linear model (both p < 0.001, adjusted-R 2 = 0.209 and R 2 = 0.381, respectively), with no statistically significant breakpoint. Conclusions: The nasal RNFLT did not have a breakpoint but showed a continual decrease even at the advanced stage of glaucoma, whereas the average RNFLT had a breakpoint over which no further thinning could be observed despite further VF loss. These findings suggest the potential of the nasal peripapillary RNFLT as a useful marker to monitor the progression in advanced glaucoma. Key words: Retinal nerve fiber layer thickness, Open-angle glaucoma.. Introduction. 

(2)  

(3) 

(4) 

(5) 

(6) 

(7)     

(8)   

(9) ƒ

(10) ‡!˜”

(11) 

(12) 

(13)  -. Although both structural and functional assessments are. mated perimetry (SAP) already have a substantial loss of. essential for the detection and monitoring of glaucoma,. retinal ganglion cells (RGCs).2,3 Spectral domain-optical. the importance of each examination varies according to. coherence tomography (SD-OCT) can provide a quantita-. 1. the disease severity. Previous reports have suggested that. ƒ

(14)   

(15) 

(16)   

(17) ƒ‡. structural assessment may be of greater importance in. layer thickness (RNFLT), optic nerve head topography, and 

(18) Π Π '4-6 The. Received: 2017. 10. 10. Accepted: 2017. 11. 14.. Revised: 2017. 11. 4.. Corresponding Author: Chungkwon Yoo, MD, PhD Department of Ophthalmology, Korea University College of Medicine, #73 Inchon-ro, Seongbuk-gu, Seoul 02841, Korea Tel: +82-2-920-5520, Fax: +82-2-924-6820 E-mail: ckyoomd@korea.ac.kr. www.koreanglaucoma.org. 

(19)  @X”#‹ †—„ˆ‹

(20)     

(21)    

(22)   

(23) ƒ‡

(24)  (RNFL) damage and in monitoring glaucomatous changes.7 % ƒ

(25)  

(26)

(27) 

(28) 

(29) 

(30) †—„ˆ‹ 

(31)  

(32)  œ ›  .

(33) 40. JOURNAL OF THE KOREAN GLAUCOMA SOCIETY.  

(34) 

(35) ƒ

(36)  ƒ   the RNFL does not decrease despite further deterioration of 8. 9ROXPH_1XPEHU. Helsinki. = 

(37)  

(38)     ƒ

(39) -. visual sensitivity loss. ‰

(40)      @X”#‹. 

(41) Œ

(42) 

(43) 

(44) 

(45) ƒ  . has been assumed to be residual glial or non-neural tissues. medical and ocular histories, best-corrected visual acuity. including blood vessels.8 At such advanced stage of the. measurements, slit-lamp biomicroscopy, auto-refraction,. 

(46)   ˜”    . Goldmann applanation tonometry, central corneal thickness. progression of glaucoma.. (CCT) measurement using specular microscope (SP-2000P;. A number of researchers have explored the relationship. Topcon Corporation, Tokyo, Japan), gonioscopic examina-.    

(47)  ƒ

(48)  ƒ 

(49)  . 

(50) = ¤^—\  ‚ 

(51)  ƒ‹  .   

(52)  @Zˆ

(53) Œ

(54) 

(55) '% ƒ . Algorithm (SITA) standard program (Zeiss-Humphrey, San. peripapillary RNFLT of the nasal sector has not received as. Leandro, CA). The measurement of peripapillary RNFLT. much attention as the average RNFLT or sectoral RNFLT.  †—„ˆ‹!¤†„ˆ‹—“^^^

(56) ‚‚

(57) ƒ. in other quadrants. Given the anatomical characteristics. 3.20; Topcon Corp., Tokyo, Japan), dilated 30-degree stere-.

(58)  

(59) Œ‡  

(60) -. oscopic photography and 50-degree red-free photography. roretinal rims are affected relatively earlier in glaucoma. (model FF 450 Plus; Carl Zeiss Meditec AG, Jena, Germa-.  

(61) 

(62)   

(63)   

(64) 

(65) .   '. one may expect some difference in the patterns of loss of. „=Z

(66) 

(67)  

(68) 

(69) 

(70) 

(71)  !ˆ& . the average and nasal RNFLT at different stages of glau-. a characteristic glaucomatous optic disc damage (focal or. coma. The floor effect seen in the average RNFLT meas-. diffuse neuroretinal rim thinning, notching, or excavation). urements may not be observed synchronously or may be.

(72) 

(73) ƒ

(74)     . 

(75) 

(76)

(77) 

(78)  

(79)  

(80) 

(81) . 

(82) 

(83) 

(84) ˜”   

(85) . RNFLT measurements. If so, the clinicians may still obtain.  '=

(86) 

(87) ˜”

(88) 

(89) ‡

(90)  . additional information from RNFL measurements for as-. consistent presence of a cluster of three or more non-edge. sessing the severity or judging progression of glaucoma at.  

(91) 

(92) ƒ

(93)    

(94) «–¬

(95)  . the advanced stage.. of occurrence in the normal population; a pattern standard. >

(96)          . ƒ

(97) !†

(98) P «–¬©

(99) 

(100) 

(101)  ‡  . evaluate the structure-function (S-F) relationships using the. result outside of the normal limits. Based on the mean de-. average peripapillary RNFLT and nasal peripapillary RN-. ƒ

(102) !† ˜” 

(103) 

(104) 

(105)  

(106) -. FLT in glaucoma patients, and compare them at different.   

(107)  !†­—š¯>±. stages of glaucoma.. 

(108) !—š>²†­—“\>

(109) 

(110)

(111) !†«—“\ dB) glaucoma groups.. Materials and Methods. ‘        

(112) 

(113) ²“• 

(114) © — ƒ

(115) 

(116)  ²\^\^^  . 4VCKFDUT.

(117)  

(118) žƒ

(119)  !£ —š'^

(120) ¦Q'^ . In this observational cross-sectional study, the medical re-.

(121) 

(122)     ¡¤'^ © . 

(123)    —

(124) 

(125) 

(126) !„=Z -. of a normal anterior chamber and an open angle; and at. ƒ '‘    Z

(127) 

(128) ˆ. 

(129)   

(130) ˜”     

(131) 

(132) — ƒ. 

(133) ªƒ =

(134) %

(135) 

(136)  . «“–¬

(137) 

(138) —

(139) ƒ«“–¬

(140) 

(141) ‡Œ

(142) «. $

(143) 

(144)  \^“¤

(145) †\^“Q'£ 

(146) 

(147) ƒ

(148) 

(149) -. \^¬'‘  Œ  

(150) 

(151)    -.

(152)  ‚   

(153) @ƒ >

(154) '‹   

(155) . ing: (1) a history of ocular trauma, ocular surgery other than. conducted in adherence to the tenets of the Declaration of. uncomplicated cataract surgery, or glaucoma surgery; (2) a. Journal of the Korean Glaucoma Society.

(156) E Yoo, et al. : Nasal RNFL thicknesses in glaucoma. 41. history of other ophthalmic diseases that could result in VF. @X”#

(157)  '‹ 

(158)  

(159)  .  ©!¤

(160)

(161) 

(162)    

(163) ˆ“X\“—

(164) -.   Œ

(165) 

(166)    .  

(167)   

(168)  

(169) ‡

(170)   ‚‚‚. '„  

(171) 

(172) Π 

(173)  —. criteria; (4) a history of nonglaucomatous optic neuropathy;.

(174)     

(175) ž

(176) 

(177)  -. or (5) a history of neurological disease or treatment that.    'ž

(178)  

(179)   @X”#-.  

(180)   ˜”'‚

(181)    

(182) 

(183)  . tinuity or misalignments, involuntary saccade or blinking.      

(184) 

(185)  . artifacts, segmentation errors, or image quality index < 60. chosen for inclusion.. Œ'. †

(186)

(187) 

(188)    

(189)  -. ‹ ƒ¤^³ 

(190) @X”#‹ƒ

(191) 

(192)  

(193) ƒ

(194) @X-. ‘    

(195)   '. ”#‹ 

(196) 

(197)  @X”#‹

(198)  -. ‚ 

(199) 

(200)   

(201) ‚„

(202) .

(203) 

(204) “^\Q '”

(205)  

(206) 

(207) 

(208)   ƒ . \“%   

(209)    

(210) ‚„

(211) 

(212) .  

(213)    

(214) '‹  ƒ¤^³  . a glaucomatous disc appearance, no visible RNFL defect on. ‡    

(215)   . red-free photography, and a normal 30-2 SITA VF result..   !”'“'‹ 

(216) ƒ

(217) @X”#‹ 

(218) ‡

(219)  

(220)  ¤š^³@X”#‹ƒ

(221) '„ 

(222) . 3FUJOBM/FSWF'JCFS-BZFS5IJDLOFTT.FBTVSFNFOU. 

(223) ƒ     

(224) 

(225)  @X”#. ‹ @X”#‹

(226) 

(227)  

(228)

(229) 

(230) . originating from the nasal hemiretina entered into the optic. †—„ˆ‹   @X”#

(231)    -. disc predominantly at 1 o’clock and 5 o’clock angles, the. 

(232) ¤š^³

(233) 

(234)   

(235) 

(236)  ¤'Q. @X”#  

(237) 

(238)  

(239) 

(240) ‡

(241)  

(242) ƒ-. mm centered on an optic disc consisting of 1,024 A-scans.. erage of the RNFL thicknesses from 1 o’clock to 5 o’clock. ‹ 

(243) ž

(244)  Œ

(245) ^ “^^

(246) -. directions.9. ƒ  

(247) „ˆ‹

(248) ' 

(249)  using 0.5% tropicamide/0.5% phenylephrine mixed eye drop (Mydrin-P, Santen Pharmaceuticals, Japan) prior to. 4UBUJTUJDBM"OBMZTFT 

(250)  

(251) 

(252) 

(253)    

(254)  

(255) . Figure 1. Clock hour directions of the right and left optic nerves. The twelve sectors of 30° each were defined clockwise for the right eyes and counterclockwise for the left eyes. H = hour.. www.koreanglaucoma.org.

(256) 42. JOURNAL OF THE KOREAN GLAUCOMA SOCIETY. 9ROXPH_1XPEHU. Package for the Social Science version 22.0 (IBM Corp.,. at a level of p «^'^–  

(257)  

(258)  -. Armonk, NY, USA) and the R statistical language version. ‡

(259)  '. ¤'\'^!

(260) ƒ

(261) 

(262) 

(263)  . '—‘ ''

(264)  

(265) 

(266)    

(267)  

(268) 

(269) 

(270) -. Results. ard deviation (SD) values for continuous variables, and frequencies and percentages for the categorical variables.. 4VCKFDUEFNPHSBQIJDBOECBTFMJOFDIBSBDUFSJTUJDT. ‹ ‡

(271)     . A total of 44 normal eyes and 283 glaucomatous eyes. variables of the mild, moderate, and advanced glaucoma.  — 

(272)   '‹ 

(273)  -.    #ƒ   -. ics of the healthy subjects and the glaucoma patients are.  ƒ

(274) 

(275)   —

(276) 

(277) 

(278)  ƒ

(279) 

(280) . 

(281) ‹

(282) “'‹ 

(283) £

(284) ˆˆ‹ 

(285) . !=X„˜=' — 

(286) 

(287)  

(288)  

(289)  . ‘ 

(290)  

(291) 

(292) 

(293)   

(294) ©  ƒ. significant difference (LSD) test. The gender differences.  

(295)  ‚„††

(296) . ƒ

(297) 

(298)  

(299)  —ž

(300)   '. ƒ

(301) ‡Œ!˜”‚!

(302) p < 0.002). In the sub-analyses. ‹ 

(303) ƒ

(304) @X”#‹

(305) 

(306) 

(307) @X”#‹  

(308) 

(309) . of the mild, moderate, and advanced glaucoma groups, age,. dependent variables, and the corresponding VF MD as an. ‚„††

(310) ˜”‚ 

(311)    !

(312) .  ƒ

(313) 

(314)  

(315)  

(316) -. p < 0.002) among the three groups (Table 1). The average.  

(317) 

(318) 

(319)  '‹ƒ 

(320)    . @X”#‹

(321) 

(322) 

(323) @X”#‹‡

(324)   

(325)  .

(326) 

(327) 

(328)  

(329)  

(330)  

(331)  

(332) R package. three glaucoma groups, and the sectoral RNFLT values also. 

(333) œ ›

(334)  

(335) ‡ .   ‡

(336)  

(337)   !

(338) . 10.  —

(339)  ' ‹ 

(340) 

(341) -. p < 0.001) (Table 2)..    

(342) 

(343) 

(344) 

(345) 

(346) .   

(347)  '‹ 

(348)    †ƒ

(349) . "TTFTTNFOUPGSFMBUJPOTIJQCFUXFFOSFUJOBMOFSWFGJCFSMBZFS.  

(350)  

(351)    

(352) ‡ ž

(353)  . UIJDLOFTTBOEWJTVBMGJFMENFBOEFWJBUJPOJOHMBVDPNBQB. based on the MD. We compared the average RNFLT and. UJFOUT. 

(354) 

(355) @X”#‹

(356)   ž

(357)   —

(358) . ‹ 

(359)    †

(360)  . ANOVA. All reported p-values are 2 sided, and a difference.

(361) ƒ

(362) @X”#‹

(363) 

(364) 

(365)  

(366) ‡

(367)   . Table 1. Demographics and clinical characteristics of the normal control and glaucoma patients. Normal (n = 44). Glaucoma (n = 283) Mild (n = 119). Moderate (n = 74). Advanced (n = 90). p -value. 54.80 ± 10.47. 54.89 ± 14.26. 59.76 ± 14.02. 62.77 ± 12.96. <0.001*. 8 (22.2). 55 (46.2). 31 (41.9). 32 (35.6). 0.158†. 14.0 ± 2.5. 16.6 ± 3.2. 18.4 ± 6.2. 18.9 ± 7.7. 0.011*. Central corneal thickness (`m). 536.50 ± 32.98. 524.80 ± 33.81. 518.48 ± 75.20. 518.67 ± 39.32. 0.323*. Spherical equivalent (diopters). -0.37 ± 1.34. -0.93 ± 2.16. -0.75 ± 2.99. -0.98 ± 2.14. 0.821*. Mean deviation (dB). -0.98 ± 1.53. -2.41 ± 1.70. -8.05 ± 1.45. -21.62 ± 6.09. <0.001*. 2.11 ± 1.15. 3.30 ± 2.00. 8.72 ± 3.48. 11.11 ± 4.06. <0.001*. 99.08 ± 0.97. 95.99 ± 4.71. 81.83 ± 8.27. 33.47 ± 21.08. <0.001*. Age (years) Female (n, %) Intraocular pressure (mmHg). Pattern standard deviation (dB)  

(368)   

(369)  . Values are presented as mean ± SD or n (%) unless otherwise indicated. no. = number; dB = decibel. *Comparison of the mild, moderate and advanced glaucoma groups by one-way analysis of variance (ANOVA); †Comparison of the mild, moderate and advanced glaucoma groups by chi-square test.. Journal of the Korean Glaucoma Society.

(370) E Yoo, et al. : Nasal RNFL thicknesses in glaucoma. 43. Table 2. Peripapillary retinal nerve fiber layer thickness of the normal control and glaucoma patients. Normal (n = 44) Average RNFLT (μm). Glaucoma (n = 283) Mild (n = 119). Moderate (n = 74). Advanced (n = 90). p -value* Post Hoc test†. 112.14 ± 7.90. 104.11 ± 10.91. 94.59 ± 10.55. 72.69 ± 10.27. <0.001. A>B>C. 101.68 ± 13.04. 101.89 ± 15.49. 92.57 ± 13.68. 75.58 ± 12.96. <0.001. A>B>C. H1. 126.75 ± 18.57. 114.41 ± 17.91. 107.85 ± 20.65. 83.19 ± 20.20. <0.001. A>B>C. H2. 106.98 ± 17.62. 107.30 ± 21.55. 94.59 ± 19.73. 80.23 ± 18.30. <0.001. A>B>C. ‡. Nasal RNFLT  RNFLT of clock-hour sectors (`m). H3. 77.46 ± 11.68. 82.19 ± 16.31. 78.41 ± 14.25. 72.32 ± 15.51. <0.001. A=B>C. H4. 82.27 ± 17.19. 89.52 ± 18.94. 80.61 ± 17.74. 68.90 ± 16.90. <0.001. A>B>C. H5. 114.93 ± 22.61. 116.02 ± 24.16. 101.38 ± 19.24. 73.23 ± 18.78. <0.001. A>B>C. H6. 144.98 ± 18.67. 132.03 ± 30.80. 112.14 ± 30.43. 71.29 ± 20.94. <0.001. A>B>C. H7. 146.98 ± 22.56. 116.82 ± 27.86. 98.09 ± 31.17. 66.57 ± 19.91. <0.001. A>B>C. H8. 87.09 ± 15.27. 79.71 ± 17.02. 76.61 ± 15.62. 64.70 ± 17.53. <0.001. A=B>C. H9. 75.80 ± 11.78. 72.66 ± 12.74. 75.54 ± 15.78. 66.46 ± 16.31. <0.001. A=B>C. H10. 96.23 ± 20.79. 93.16 ± 16.78. 89.81 ± 20.73. 65.67 ± 18.88. <0.001. A=B>C. H11. 143.48 ± 17.28. 125.81 ± 21.18. 110.59 ± 24.90. 77.49 ± 21.95. <0.001. A>B>C. H12. 138.66 ± 20.63. 120.62 ± 20.73. 109.92 ± 23.67. 82.21 ± 21.72. <0.001. A>B>C. Values are presented as n (%) unless otherwise indicated.  

(371)      * Comparison of the mild, moderate and advanced glaucoma groups by one-way analysis of variance (ANOVA); †Least   post hoc test was performed to compare differences among the mild (A), moderate (B), and advanced (C) ‡ glaucoma groups; ! "   "#$&$'$+/"0" ". A. B. Figure 2. Scatterplots showing the relationships between the mean deviation and (A) the average retinal nerve fiber layer thickness (RNFLT) and (B) the nasal RNFLT. The dotted line in (A) indicates the breakpoint of -16.290 dB.. assessed using a simple linear regression model (p < 0.001, 2. 

(372) 

(373)  '‹  ƒ

(374) 

(375) . R ¨^'š\¤'% ƒ 

(376) 

(377)  -.  =

(378) 

(379)   

(380)  ›Cp.

(381) 

(382) 

(383) 

(384) '‹  

(385)  

(386) .

(387)  

(388)  >

(389) 

(390)   

(391) 

(392)  . www.koreanglaucoma.org.

(393) 44. JOURNAL OF THE KOREAN GLAUCOMA SOCIETY. 9ROXPH_1XPEHU. Table 3. Comparisons of demographics and retinal nerve fiber layer thickness among the four quartile groups of glaucoma patients with. mean deviation values lower than the breakpoint. Age (years) Female (n, %). 1st quartile (n = 16). 2nd quartile (n = 17). 3rd quartile (n = 17). 4th quartile (n = 16). p -value. 65.69 ± 12.37. 66.29 ± 10.87. 59.35 ± 15.65. 61.88 ± 9.93. 0.330*. 4 (25.0). 9 (52.9). 7 (41.2). 4 (25.0). 0.264†. Intraocular pressure (mmHg). 22.69 ± 12.76. 21.12 ± 9.54. 16.88 ± 3.35. 16.19 ± 3.97. 0.080*. Central corneal thickness (`m). 517.37 ± 37.95. 507.65 ± 42.90. 524.38 ± 35.94. 516.38 ± 41.15. 0.720*. Spherical equivalent (diopters). -0.49 ± 1.97. -0.63 ± 1.93. -1.38 ± 1.99. -0.91 ± 2.27. 0.647*. -30.13 ± 1.04. -26.69 ± 0.95. -22.56 ± 1.66. -17.93 ± 1.05. <0.001*. Pattern standard deviation (dB). 4.57 ± 2.05. 9.60 ± 1.75. 12.91 ± 2.59. 13.93 ± 1.83. <0.001*.  

(394)   

(395)  . 4.94 ± 4.15. 19.18 ± 5.82. 28.59 ± 6.87. 42.44 ± 1.61. <0.001*. Average RNFLT (`m). 68.81 ± 7.98. 66.88 ± 7.11. 74.24 ± 11.00. 73.44 ± 10.85. 0.076*. Nasal RNFLT (`m). 69.20 ± 9.12. 71.01 ± 9.91. 77.39 ± 11.09. 80.91 ± 16.48. 0.023*. Mean deviation (dB). Values are presented as mean ± SD or n (%) unless otherwise indicated.  ! 

(396)  

(397) "

(398) 

(399)  

(400)  #$&

(401) ' *Comparison of the four quartile groups by one-way analysis of variance (ANOVA); †Comparison of the four quartile groups by chisquare test.. if the alternative nonlinear model fit the data better than. FLT at MD values < -16.290 dB (p = 0.147). The average. the linear model (Supplementary Table 1).11 This analysis. @X”#‹  

(402)  

(403) 

(404) 

(405) .   

(406)  

(407)    †

(408)  

(409) ƒ-.  ž

(410) 

(411) ƒ

(412)  

(413)  

(414)  .

(415) @X”#‹

(416)  Œ

(417)  

(418) — -.   '¥ `  

(419) š¥'–¬ 

(420)  '. nomial regression model than by a linear model (p < 0.001, 2. adjusted-R = 0.644).. ‹ 

(421)    †

(422)   

(423) 

(424) @X”#‹

(425) 

(426)  

(427) 

(428)  . =  ”'\ R

(429) 

(430) œ › ‡.  '=

(431) 

(432) 

(433)    

(434) ‡

(435)  . the MD value of -16.290 dB (SD ¡ “'¥^¤

(436) 

(437) ‡

(438)  . 

(439)    †

(440)  

(441) 

(442) @X”#‹!p <. 

(443)  

(444)  

(445) 

(446) ‡

(447)  

(448) 

(449)  . 0.001, R2 = 0.381), and the second-order polynomial model. †

(450)  

(451) ƒ

(452) @X”#‹  .  ‡  

(453)  

(454) !p < 0.001, adjust-. †

(455)   

(456)  

(457)  !p = 0.047, adjusted-R. 2. ed-R2¨^'\^¥'‚

(458)    

(459) 

(460) @X”#‹

(461) . ¨^'š–¥'‹ 

(462)    †

(463)  

(464) ƒ

(465) . plotted against MD, no statistically significant breakpoint. @X”#‹

(466)  .

(467) !p = 0.071). ‚ ƒ 

(468)    

(469) 

(470) . y¨•š'Q¤¤¦^'–\^ x¦“'š\“!x¦“š'\¥^ÂT. 

(471)  @X”#‹  

(472)   . If x < -16.290, T = 0. the average and the nasal RNFLT, the MD values less. If x > -16.290, T = 1.

(473) —“š'\¥^>  

(474)  ž

(475)  —¤“'š  to -28.07 dB (first quartile); -27.92 to -25.10 dB (second. Where, y 

(476) ƒ

(477) @X”#‹ !`

(478) . quartile); -24.82 to -19.64 dB (third quartile); and -19.46 to. x †!>'‹ †

(479) ƒ›  

(480)  . —“š'¤Q>! ž

(481)  '‹ 

(482) ‡

(483)  -. Œ

(484)  

(485)  

(486)    . ence among the four quartiles in age, sex, IOP, CCT, and. †

(487)  

(488) ƒ

(489) @X”#‹  †

(490)  

(491) . SE (Table 3). We compared the RNFLT of each of the four. 12. the breakpoint ©

(492)  

(493)  ‡

(494)  

(495) 

(496) 

(497) . †ž

(498)  —

(499) =X„˜='‰  

(500) ƒ

(501) .   †

(502)  

(503) ƒ

(504) @X-. RNFLT did not differ ( p = 0.076) among four quartile. Journal of the Korean Glaucoma Society.

(505) E Yoo, et al. : Nasal RNFL thicknesses in glaucoma. 45.  

(506) 

(507) @X”#‹   -. et al.14ƒ  

(508) @X”#‹

(509) 

(510) . icant differences (p = 0.023) (Table 3). The post hoc LSD.     

(511)   †   

(512)   .  ƒ

(513) 

(514)  

(515)    †ƒ

(516)   . MS, is a parameter adjusted to the general normative data.. ž

(517)  

(518) 

(519) ‡

(520)    

(521) 

(522) @X”#. They suggested that either or both of the variables could. 

(523)      '. be used for data interpretation since both the MS and the †  

(524)   

(525) 

(526)      RNFLT.14 In our study, for the comparison of the changes of. Discussion. 

(527) ƒ

(528) @X”#‹

(529)  

(530) 

(531) @X”#‹ 

(532)     ‹     

(533)  

(534) 

(535) @X”#‹

(536)  

(537) -. †ƒ

(538)  

(539)  

(540)    

(541)  .     

(542) 

(543)  

(544) 

(545)  

(546) 

(547)  . ž

(548)  '‰ƒ

(549)   

(550)  . ƒ

(551)  

(552)

(553) 

(554)   

(555) ƒ

(556) @X”#‹.  †

(557)  

(558) . not decrease significantly after it reached the breakpoint. difference in the mean age among the patients in the four.  

(559) ƒ'‹   ‡  . ž

(560)  ' 

(561)    . 

(562)  —”

(563)    

(564) 

(565) @X”#‹. may also be explained by the differences in the RNFLT. and the average RNFLT at different stages of glaucoma.. measurement among different OCT instruments. A previ-. Previously, several studies have reported on the ‘floor. ous study conducted using Spectralis and RTVue reported. effect’ of the RNFLT in terms of the S-F relationships in. that the RTVue data predicted a thicker residual RNFLT. glaucoma. Hood et al.8 suggested that there is a base level. 

(566)   

(567) 

(568)

(569) '15 Another study assessing.  

(570) 

(571)  @X”#‹

(572)     @X”#. the agreement of parapapillary RNLT measurements among. thinning can be detected by OCT. They reported that the. three SD-OCT devices reported that RNFLT measurement. 

(573) ƒƒ   —

(574) „ˆ‹

(575) ¤¤¬ . 

(576)  @‹˜ 

(577) 

(578) ˆ    . 

(579) @X”#‹

(580)    

(581)   -. compatible and thus concluded that they should not be used. 8. ing curves. „ 

(582)   

(583)    . interchangeably.16‹       

(584) . @X”#‹

(585) 

(586)    

(587) 

(588)  

(589) Œ-. the actual base level of RNFLT but a statistical breakpoint.. 

(590)  š^¬ 

(591)   

(592) . =   

(593)    †

(594)  

(595) ƒ

(596) . 13. SD-OCT devices. In the current study, the average RN-. @X”#‹  ‡

(597)   

(598)   . FLT corresponding to the MD value of breakpoint (-16.290. regression analysis, the breakpoint itself is not supposed to. >

(599) š¥'–¬ 

(600)    

(601)   .      

(602) ƒ'. than that reported in a previous study. There are some pos-. By contrast to the average RNFLT, the nasal RNFLT did. sible explanations for such discrepancies. First, most of the. not have a breakpoint for corresponding VF MD deteri-. ƒ 

(603) @X”#‹ =‡ƒ

(604) -. 

(605) '”   

(606)  @X”#‹. uated the S-F relationship using mean sensitivity (MS) ob-. normal controls and mild glaucoma group by student t-test,.

(607)   

(608) ƒ

(609)   †'% ƒ . 

(610) 

(611) @X”#‹   

(612) ‡

(613)  !p =. chose MD as the dependent variable in the regression anal-. ^'¥¤š  

(614) ƒ

(615) @X”#‹

(616) 

(617) . yses of the S-F relationships because the aim of this study.

(618) 

(619)    

(620) 

(621) 

(622)  !p.

(623)     

(624) Œ

(625)  

(626) ƒ

(627)  

(628)  . «^'^^“!

(629)

(630)     '‹   

(631) . ƒ

(632) 

(633)    

(634)  

(635) ƒ

(636) . nasal RNFLT is spared until disease progresses consider-. RNFLT and the nasal RNFLT. In clinical practice, MD is.

(637)  '‚—

(638) 

(639)   

(640)   

(641) †ƒ

(642) .   

(643)  ƒ

(644) ˜”

(645) 

(646) . 

(647)  

(648)   

(649)    . individual patients since the MD index is described by sim-.  ‡ ž

(650)  

(651) ‡

(652)    

(653) 

(654) . ple numbers on a printout, unlike MS. Furthermore, Ajtony. @X”#‹

(655)   \'‹ ‡

(656) . www.koreanglaucoma.org.

(657) 46. JOURNAL OF THE KOREAN GLAUCOMA SOCIETY. 9ROXPH_1XPEHU. evaluation of the nasal RNFLT may be more helpful to de-. fore, the exact changing patterns of the average RNFLT. termine glaucoma progression than the average RNFLT in. and the nasal RNFLT need to be assessed by further lon-.

(658)

(659) 

(660) '‚   

(661) 

(662) 

(663)  -. gitudinal studies. Second, the degree of optic disc torsion. ipapillary RNFL is more susceptible to loss in the superior.

(664)   

(665)   

(666) 

(667) @X”#‹'. and inferior regions than in the nasal or temporal regions.17. ‹   

(668)     . Further, temporal crescent is responsible for a considerable. adjusted according to the degree of disc torsion. Previous. 18. high retardation artifact , and the temporal RNFLT may be. 

(669)  

(670) ƒ 

(671) 

(672) 

(673)   

(674) . 

(675) 

(676)          -. and optic disc torsion.24,25=   

(677) .

(678) 

(679) 

(680)    ˆ„ˆ‹

(681) '19 Thus, the. in the SE values among the glaucoma groups in this study,. nasal RNFLT measurement may remain more reproducible. the degree of disc torsion might have served as a confound-. until the advanced stage because the remaining neuroretinal. 

(682)  '‹  

(683)  ƒ

(684) ‡ 

(685) . rim is located mainly in the nasal sector of optic discs in. not taken into account on patient enrollment. The patients at. advanced glaucoma patients.. advanced stage of glaucoma might have had different visual. One may doubt that the nasal RNFLT is useless for mon-. ‡

(686)  

(687) 

(688)   

(689)  -. itoring glaucoma progression, because the nasal sector. ral-sparing even if they had the same VF MD values. The. naturally contains a lesser component of nerve fibers and. pattern of change of the nasal RNFLT might vary depend-. non-neural tissues comprise a large proportion of it. The. ing on the existence of temporal-sparing. Fourth, although. 

(690) 

(691)  

(692)   

(693) ƒ 

(694)  

(695)  . Œ

(696)    ƒ

(697) 

(698)  «\^\^^ƒ. 

(699)    !=ªˆ¨^'–¥  . ƒ

(700) 

(701)  

(702)  ‚ 

(703) 

(704) ˆ

(705) ‡

(706) . 20. source-OCT and 0.55 for SD-OCT). % ƒƒ. of Diseases 10th revision (ICD-10), poor visual acuity or.    

(707) 

(708)  

(709) 

(710)  

(711) 

(712) @X-. split fixation of advanced glaucoma patients might have. ”#‹ 

(713)    ƒ

(714) 

(715)  Π

(716) 

(717) -. affected the image quality of RNFL scans. Huang et al.26. phy.21,22 These results suggest that the nasal sector has a.  

(718)   

(719) ž

(720)  

(721) ‡

(722)   -. capacity for representing further deterioration. Therefore,. 

(723)   

(724) @X”#‹

(725)   ¤†„ˆ‹—. it may help clinicians determine progression of glaucoma. 1000. In another study, it has been reported that the mean.  

(726) 

(727)   

(728) 

(729) 

(730) „ˆ‹

(731)  '% -.

(732) ƒ

(733)  @X”# 

(734)   

(735)  “\'“ ¡ ““'Q `. ƒ

(736)   Œ    . upon a scan circle displacement of 0.7 mm.27% ƒ . nasal RNFLT because of the relatively high variability of. Œ@X”#

(737)   

(738) ž

(739)  «š^. 23. nasal sector in OCT measurements. =     .   

(740)   . accepted that the assessment of the VF function is the main. effect of image quality or off-centered scanning.28. examination for determining the glaucoma progression at. In summary, the nasal peripapillary RNFLT continued to.

(741)

(742) 

(743) 

(744) 

(745) ˜”  

(746) ‡ . 

(747) ƒ

(748)  

(749)

(750) 

(751) 

(752) 

(753)  

(754) . in some cases due to split fixation. In such cases, the as-. 

(755) ƒ

(756) @X”#

(757) 

(758) 

(759)  ƒ   . sessment of the changes of the nasal RNFLT may offer cli-. RNFL thinning could be observed despite the further VF. nicians additional information for judging the progression. '‹ ‡ 

(760)  

(761)   

(762) 

(763) . of glaucoma. Besides, considering the higher prevalence. RNFLT may provide clinicians additional information that. of glaucoma in older people, objective methods such as the. might be useful for judging the progression of glaucoma in. @X”#‹

(764)   

(765)  

(766)    . the advanced stage of disease..  

(767)   ˜”   ' This study has some limitations. First, this is a cross-sectional study conducted at a tertiary referral center. There-. Journal of the Korean Glaucoma Society.

(768) E Yoo, et al. : Nasal RNFL thicknesses in glaucoma. References. 47. main optical coherent tomography instruments in measur

(769) 

(770) 

(771) 

(772)   

(773) ƒ‡

(774)  '=

(775) . “'‰@X%

(776)  @‹”'‰

(777) 

(778)  association consensus series-5: Glaucoma screening, 2nd edition,ed. Hague: Kugler, 2008; 33-5. 2. Medeiros FA, Lisboa R, Weinreb RN, et al. Retinal gan  

(779) 

(780) 

(781)   

(782)  ƒ ƒ

(783) ‡ 

(784) 

(785) '„

(786)   2013;120:736-44. 3. Quigley HA, Dunkelberger GR, Green WR. Retinal. Ophthalmol 2013;91:e196-202. 14. Ajtony C, Balla Z, Somoskeoy S, Kovacs B. Relationship   ƒ

(787)    ƒ 

(788)   

(789)  ƒ  layer thickness as measured by optical coherence tomography. Invest Ophthalmol Vis Sci 2007;48:258-63. “–'

(790)

(791) $ˆ>†#‰

(792) $# 

(793) '@ 

(794) ƒ fibre layer thickness floor and corresponding functional loss in glaucoma. Br J Ophthalmol 2015;99:732-7.. 

(795)  

(796)   

(797)   

(798)  

(799)  -. 16. Leite MT, Rao HL, Weinreb RN, et al. Agreement among.     

(800)      

(801) 

(802) '= $ „

(803) . spectral-domain optical coherence tomography instru-. 1989;107:453-64..  

(804)  

(805) ƒ‡

(806)  '=. 4. Wu H, de Boer JF, Chen TC. Reproducibility of retinal. J Ophthalmol 2011;151:85-92.e1.. nerve fiber layer thickness measurements using spec-. “ '#˜‰%'@ 

(807) ƒ‡

(808) 

(809)  . tral domain optical coherence tomography. J Glaucoma.   ƒ 

(810) 

(811)    

(812)  ‘ 

(813)  

(814)  . 2011;20:470-6..  

(815) 

(816) '„

(817)  “¥¥¥©“^š“^^š—•'. –' Zµ—Z

(818) ¶

(819) =„˜Z> ˆ 

(820) '@-. “•'‰@X

(821) 

(822) ·

(823)  #'

(824) 

(825) -.  @‹˜ 

(826) ƒ‡

(827)  

(828) -. 

(829)    

(830)  ƒ‡

(831) 

(832) 

(833) . 

(834)  

(835) 

(836)     

(837)  

참조

관련 문서

The index is calculated with the latest 5-year auction data of 400 selected Classic, Modern, and Contemporary Chinese painting artists from major auction houses..

The key issue is whether HTS can be defined as the 6th generation of violent extremism. That is, whether it will first safely settle as a locally embedded group

The “Asset Allocation” portfolio assumes the following weights: 25% in the S&amp;P 500, 10% in the Russell 2000, 15% in the MSCI EAFE, 5% in the MSCI EME, 25% in the

1 John Owen, Justification by Faith Alone, in The Works of John Owen, ed. John Bolt, trans. Scott Clark, &#34;Do This and Live: Christ's Active Obedience as the

The academic journals used at the time were ‘The Mathematical Education’ of The Korean Society of Mathematical Education, ‘Journal of Educational Research

In gi ngi va,LCs are found i n oralepi thel i um ofnormalgi ngi va and i n smal l er amountsi nthesul cul arepi thel i um,buttheyareprobabl yabsentfrom thejuncti onal epi thel

Department of Internal Medicine, Novosibirsk State University, Russia 1 , Department of Cardiology, Surgut State University, Russia 2 , Department Fundamental

웹 표준을 지원하는 플랫폼에서 큰 수정없이 실행 가능함 패키징을 통해 다양한 기기를 위한 앱을 작성할 수 있음 네이티브 앱과