• 검색 결과가 없습니다.

Chapter 12. Multimode and Transient Oscillation

N/A
N/A
Protected

Academic year: 2023

Share "Chapter 12. Multimode and Transient Oscillation"

Copied!
18
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

Chapter 12. Multimode and Transient Oscillation

Pulsed oscillation : Relaxation oscillation, Q-switching, Mode locking ?

12.2 Rate Equations for Intensities and Populations

(10.5.8) =>

 

I g L g

cl

I r l r

I L g

cl dt

dI

t

) (

) 1

2 ( ) 1

( 1 2

g g

I

ct

 ( ) L

l (10.5.14), 1=2=0, A => 21

1 2

21 1

2 2

21 2

) (

) (

K h N

I g dt

dN

K h N

I g dt

dN

 

) )(

( ) ( ) 8 (

)

( 2 1 2 1

2

N N S

N A N

g  

 

(2)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

Assume, N1<<N2 => g() ~ ()N2

2 2

21 2 2

2

) (

) (

K N

I h N

dt dN

I cg I

N dt c

dI

t

12.3 Relaxation Oscillation

Steady-state solution ;

) (

) (

2

21 2

t t

N g

g h K I





(3)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

Perturbation method ;

2

2 N

N I I

N2

I





(12.2.5) =>

I

c

N



I

cg

I

dt d

t 2

    



 

 

I cg I

N I

N c

I cg I

N dt c

d

t t

2 2

2

2 0

N I cg I

c t

since

 

 

I c c

I dt c

d   0

Similarly,

 

 

t t

g K h

g dt

d 2

(4)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

2 0

2 0

2   

     

dt d dt

d

where  K /2 gt

I

h g c t

2

0

Sol)

 ( t )  Ae

t/2

cos(  t   )

where

4

2 2 0

Intensity :

)

2

cos(

/

 

IAe

t

I

t

) )(

/ (

2 2

0

0 21 t

r c g g

T

21 0

1

g gt

r

I

I

Tr

2

~ e

t/

t

homework

(5)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

12.4 Q Switching

Q switching : A way of obtaining short, powerful pulses

Sudden switching of the cavity Q(loss) from a low(high) value to high(low) value.

Principle of Q switching : Suppose we pump a laser medium inside a very lossy cavity. Laser action is precluded even if the upper level population N2 is pumped to a very high value (nearly small signal value). Suddenly we lower the loss to a value permitting laser oscillation. We now have a small-signal gain much larger than the threshold gain for oscillation.

<Qualitative explanation>

t N cg

y N N

ch

x I t

t t

, 2 , Define,

(12.2.5a) => y x dt

dx  ( 1)

(6)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

Pumping and spontaneous decay of N2

during the pulse interval is negligible, since the pulse is short enough.

(12.2.5b) =>

d xy

dy  

(7)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

12.5 Methods of Q Switching

- Rotating mirrors ~ 10,000 rpm

- Electro-optical switching

- Saturable absorber (Passive Q-switching)

; saturate the absorption (bleaching)

(8)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

12.7 Phase-Locked Oscillators

Mode Locking : Locking together of the phases of many cavity longitudinal modes.

=> Even shorter laser pulse than can be achieved by Q switching.

<Phase-locked harmonic oscillator>

Displacements of N harmonic oscillators with equally spaced frequencies ; )

sin(

)

(tx0

t

0

xn n

where,

2 ,...., 1 2 2

, 1 2 1 , 1 2

1

0

N N

N n N

n n

The sum of the displacements ;

 

n

N N

n

n t x t

x t

X

2 / ) 1 (

2 / ) 1 (

0

0 sin( )

) ( )

(  



 

 



 

 

n t in n

t i n

t n t

i x e e

e

x0Im (0 0 ) 0Im (0 0)

(9)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

) 2 / sin(

) 2 /

2 sin(

/ ) 1 (

2 / ) 1

( y

e Ny

N N

iny

) sin(

) (

) 2 / sin(

) 2 / ) sin(

sin(

) 2 / sin(

) 2 / Im sin(

) (

0 0 0

0 0 0

) (

0 0 0



 

 



 

t x

t A

t t t N

x

t t e N

x t X

N

t

i

# Peaks : AN(t)maxN at (2 ) , 0,1,2,....

m mT m

tm

# Temporal width :

N T

N N

2

# Maximum total oscillation amplitudes equals to N times the amplitude of a single oscillator

# This maximum amplitudes occur at intervals of time T

# This temporal width of each spike get sharper as N is increased

(10)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

12.8 Mode Locking

<Shortest pulse length>

The maximum number of longitudinal modes : g vg c

L L

c

Mv  

 2

2 / The shortest pulse length :

g

M cM v

L

 

 2 1

min

Examples)

nsec sec 1

10 1700

1 1

1

min 6

vD

1) He-Ne laser, vD~1700MHz

sec 10

~ 11

min

2) Ruby laser, vD~1011Hz

sec 10

~ 12

min

3) Dye laser, vD~1012Hz

(11)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

<Mode-locked laser oscillation>

Electric field of m-th longitudinal mode :

) sin(

ˆ sin )

sin(

) ˆ (

) ,

( m

ε

m m m m

ε

m m m m

m zt ztkt

E

where,

,...

3 , 2 , 1

,

m

L m c c km

m

,....

3 , 2 , 1

,

m

m L km

Assume, the mode fields all have the same magnitude and polarization, and also

ε

0 m0

m

m m

m

m z t k z t

E t

z

E( , ) ( , )

ε

0 sin sin

=> Total electric field in the cavity ;

L c n M L

n M

km( )/ ,m( )/ where,

n N

N

L

ct z n M L

ct z n M

L ct n M L

z n t M

z E

) (

) cos(

) (

) cos(

2 1

) sin(

) sin (

) , (

0 2 / ) 1 (

2 / ) 1 ( 0

ε ε

(12)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

L ct z

L ct z N L

ct z M L

ct z

L ct z e N

L e

ct z n M

L ct z iM

N N n

L ct z n M i N

N

2 )/

( sin

2 )/

( sin ) cos (

2 )/

( sin

2 )/

( Re sin

) Re (

) cos(

/ ) (

2 / ) 1 (

2 / ) 1 (

/ ) ( ) ( 2

/ ) 1 (

2 / ) 1 (





 

L ct

z

L ct

z N L

ct z M L

ct z n M

n sin ( )/2

2 / ) (

sin ) cos (

) (

) cos(

Similarly,





)

2 )/

( sin

2 )/

( )sin

( 2 cos

)/

( sin

2 )/

( )sin

( 2 cos )

,

(

ε

0 0 0

L ct z

L ct z ct N

z L k

ct z

L ct z ct N

z k t

z

E

L ct

z

L ct

z t N

z AN

2 / ) (

sin

2 / ) (

) sin ,

)(

(

 

( , )cos ( ) ( , )cos ( )

) 2 ,

(z t

ε

0 A( ) z t k0 z ct A( ) z t k0 z ct

EN   N

where,

(13)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

) ,

)(

( z t

AN has maxima occurring at z ct m(2L), m 0,1,2,....

cavity round trip time

(14)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

12.9 AM Mode Locking

) sin(

sin )

,

(

ε

m m m m

m z t k z t

E   

ε

m

AM(amplitude modulation) : is modulated periodically

 ε

m

ε

0(1cost) modulation index

z k t

t t

z

Em

( , ) ε

0

( 1 cos ) sin(

m

m

) sin

m

z k t

t

t m m m m m m

m

) sin[( ) ] sin[( ) ]} sin

{sin(

2 2

ε

0

If = (m+1-m=c/L), each mode becomes strongly coupled to its nearest-neighbor modes, and it turns out that there is a tendency for the modes to lock together in

phase.

(15)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

12.10 FM Mode Locking

FM(frequency modulation) : The phase of the fieldis modulated periodically )

cos sin(

sin )

,

(z t

ε

k z t t

Emm m mm 

  

) cos sin(

) cos(

) cos cos(

) sin(

) cos sin(

t t

t t

t t

m m

m m m

m

) 2 cos(

) ( ) 1 ( 2 ) ( ) cos

cos( 2

1

0

J x J x k

x k

k

k

] ) 1 2 cos[(

) ( )

1 ( 2 ) cos

sin( 2 1

0

J x k

x k

k

k

) (x

Jn : Bessel function of the first kind of order n



]}

) 5 cos[(

] )

5 ){cos[(

(

]}

) 4 sin[(

] )

4 ){sin[(

(

]}

) 3 cos[(

] )

3 ){cos[(

(

]}

) 2 sin[(

] )

2 ){sin[(

(

]}

) cos[(

] )

){cos[(

(

) sin(

) (

) cos sin(

5 4 3 2 1 0

m m

m m

m m

m m

m m

m m

m m

m m

m m

m m

m m m m

t t

J

t t

J

t t

J

t t

J

t t

J

t J

t t

L

c/

control !

(16)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

12.11 Methods of Mode Locking

1) Acoustic loss modulation (AO modulator)

acoustic wave

diffraction

# A standing wave in a medium induces the refractive index variation ; n(x,t) asin(st )sinksx

# Diffraction angle ;

ns

sin 2

# Modulation frequency ; sin(st)1 2s

 2 

s

  (   c / L )

control ! ex) L ~ 1 m => ~ 9x108 rad/s

=> s=/4 = 75 MHz (quartz oscillator)

(17)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

2) Electro-optical phase modulation (Pockels cell)

Ea

n n0   Refractive index of electro-optic medium ;

Ea

where, : applied electric field



 

 

 

 



 

  



 

c z t n

z c E

c z t n t

z a

0 0 0 0

cos xˆ

cos xˆ

) , ( E

ε ε

z c Ea

 V

c

 

where,

3) Saturable absorbers

Absorption coefficient of saturable absorber ; sat I I a a

/ 1

0

   a0a0I/Isat Suppose that there are two oscillating cavity modes ;

) sin(

sin )

sin(

sin )

,

(z t

ε

1 k1z

1t

1

ε

2 k2z

2t

2

E

(18)

Nonlinear Optics Lab

Nonlinear Optics Lab . . Hanyang Univ. Hanyang Univ.

Intensity :

)}

sin(

) sin(

sin sin

2

) (

sin sin

) (

sin sin

{

) , ( )

, (

2 2

1 1

2 1

2 1

2 2

2 2

2 2 2

1 1

2 1

2 2

1 0

2 0

ε ε ε ε

t t

z k z

k

t z

k

t z

k c

t z E c t

z I

] )

cos[(

] )

cos[(

) sin(

) sin(

2

2 1 2

1

2 1 2

1 2

2 1

1

t t t

t

)]

cos(

sin sin

2

sin sin

[ )

, (

2 1 2

1 2

1

2 2 2

2 1

2 2

2 1

ε

ε ε

ε

0

t z

k z

k

z k z

k t

z

I c



2 1 2

1 2 1, ,

#      

Time averaged intensity :

Intensity is modulated

=> Absorption coefficient can be also modulated

참조

관련 문서

To this end, prior studies of the type of value, design paradigm and design value were considered, and three types of design value (practical value,

Thus, by developing high quality and high value added injection molds, the final products can be widely applied to all parts of the vehicle exterior, and it

The organ effective dose value according to whether or not Nano Tungsten is used in the pediatric Pelvis test 39 Table 9.. Dose value depending on whether Nano

The high value added of the mold manufacturing industry is a core task for all industries, and the need for mold development is expected to increase further,

• A legal assignment for the circuit, is an assignment of values to the labeled wires where the output value of each multiplication gate is indeed the product of the

By the noisy channel-coding theorem by Shannon (1948), reliable transmission (that is transmission with error probability less any given value) is possible even over a noisy

19.. 4.6 The homogeneous nucleation rate as a function of undercooling ∆T. ∆T N is the critical undercooling for homogeneous nucleation.. → critical value

 If we wish to develop a learning process based on