• 검색 결과가 없습니다.

Lecture 11

N/A
N/A
Protected

Academic year: 2022

Share "Lecture 11"

Copied!
23
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Equations of Continuity and Motion (2/6)

(2)

11.1 Equations of Motion

11.2 Navier-Stokes Equations

Objectives

- Derive 3D equations of motion

- Derive Navier-Stokes equation for Newtonian fluid

(3)

• External forces = surface force + body force

〮 Surface force:

~ normal force + tangential force

〮 Body forces:

~ due to gravitational or electromagnetic fields, no contact

~ act at the centroid of the element → centroidal force (A)

Fma

x x

F ma

  

I. Newton (1643~1727)

(4)
(5)

x y z

gigjgkg

LHS of (A):

 

x x

Fx y z g

    

x

x

y z

x

x y z

x

         

 

yx

yx

x z

yx

y x z

y

            

zx

zx

x y

zx

z x y

z

            

(B)

(6)

Divide (B) by volume of element

x x yx zx

x

F g

x y z x y z

  

  

   

     

(C)

RHS of (A):

x

x

ma a

x y z

 

  

(D)

(7)

Combine (C) and (D)

x yx zx

x x

g a

x y z

  

   

  

xy y zy

y y

g a

x y z

  

   

  

xz yz z

z z

g a

x y z

  

  

(11.1)

→ A general equation of motion containing 9 unknowns (6+3)

(8)

– Eq (11.1) ~ general equation of motion containing 9 unknowns

– For Newtonian fluids (with single viscosity coeff.), use stress-strain relation given in (9.21) and (9.22) to reduce the number of unknowns

→ Navier-Stokes equations Eq. (9.21a):

 

2 2

3

pressure normal stress due to fluid deformation and viscosity

x

p u q

     x        

(9)

 

2 3

y

p q

      y        

 

2 2

z

3

p w q

     z        

From Eq. (9.22):

yx xy

v u

x y

       

yz zy

w v

y z

         

zx xz

u w

z x

    

 

 

(11.3) (11.2)

(10)

Substitute Eqs. (11.2) & (11.3) into (11.1)

Assume constant viscosity (neglect effect of pressure and temperature on viscosity variation)

 

2 2

x 3 x

v u

p u u w

g q a

x y

x x x y z z x



 

   

   

   

 

2 2

x 3 x

v u

p u u w

g q a

x y

x x x y z z x

 

      

     

     

u v w

x y z

  

 

  

(11)

u v w

x y z

x

  

       

  

2 2 2 2 2 2 2 2

2 2 2 2

. . 2 2

x 3

p u u v w v u u w

L H S g

x x x x y x z x y y z x z

                         

2 2 2

2 2 2

2 2 2 2

1

x 3

u v w

p u u u

g x x y z x x y x z

                 

 

2 2 2

2 2 2

1

x 3

p u u u

g q

x x y z x

             normal stress + shear stress

(12)

 

2 2 2

2 2 2

1

x 3 x

p u u u

g q a

x x y z x

                   

 

2 2 2

2 2 2

1

y 3 y

p v v v

g q a

y x y z y

                   

 

2 2 2

2 2 2

1

z 3 z

p w w w

g q a

z x y z z

                   

→ Navier-Stokes equation for compressible fluids with constant viscosity (11.4)

(13)

1) For inviscid (ideal) fluid flow, (  0 → viscous forces are neglected.

   

2

3

g p q q q q q

t

               

 

dq q

a q q

dt t

    

where

 

g p q q q

     t   

→ Euler equations for ideal fluid

(11.5)

(14)

Define acceleration due to gravity as 0

  q

 

2

q

g p q q q

        t   

(11.6)

x

g g h x

  

y

g g h y

  

g    g h

z

g g h z

  

(15)

For Cartesian axes oriented so that h and z coincide

→ minus sign indicates that acceleration due to gravity is in the negative h direction

Then, N-S equation for incompressible fluids and isothermal flows are

0 , 1

x y

g g h

z

   

g

z

  g

(11.7)

(16)

2 2 2

2 2 2

1

u u u u h p u u u

u v w g

t x y z x x x y z

 

 

                              

2 2 2

2 2 2

1

v v v v h p v v v

u v w g

t x y z y y x y z

 

 

                              

2 2 2

2 2 2

1

w w w w h p w w w

u v w g

t x y z z z x y z

 

 

                              

(11.8)

Local

acceleration

Convective

acceleration Body force per mass

Pressure force per mass

Viscosity force per mass

(17)

→ We need one more equation to obtain a solution when the boundary conditions are specified.

→ Eq. of continuity for incompressible fluid

♦ Boundary conditions

1) kinematic BC: velocity normal to any rigid boundary (wall) equal the boundary velocity (velocity = 0 for stationary boundary)

2) physical BC: no slip condition (continuum stick to a rigid boundary)

→ tangential velocity relative to the wall vanish at the wall surface

u v w 0

x y z

     

  

(18)

of the nonlinear, 2nd-order nature of the partial differential equations.

→ Only particular solutions may be obtained by simplifications.

→ Numerical solutions are usually sought.

① DNS

② RANS

③ LES

(19)

- Millennium Prize Problems by Clay Mathematics Institute (CMI)

- Prove or give a counter-example of the following statement: In three space dimensions and time, given an initial velocity field, there exists a vector velocity and a scalar pressure field, which are both smooth and globally defined, that solve the Navier–

Stokes equations.

(20)

r - component:

2

r r r r

r z

v v

v v v v

v v

t r r r z

 

     

   

 

   

 

1    1

2 2 2r

2

2 2 2r

r r

p v v v

g rv

r r r r r r z

 

 

 

     

               

- Navier-Stocks equations in cylindrical coordinates for constant density and viscosity

(21)

z - component:

r

r z

v v v v v v v

v v

t r r r z

 

   

     

     

 

   

2 2 2 2 2 2

1 p 1 1 v 2 v

r

v

g rv

r r r r r r z

 

  

 

     

               

z z z z

r z

v

v v v v

v v

t r r z

   

    

     

 

2 2

2 2 2

1

z

1

z z

z

p v v v

g r

z r r r r z

 

        

                 

(11.9)

(22)

     

1 1

r

v

z

0

rv v

r r r

z

     

  

(11.10)

Normal & shear stresses for constant density and viscosity

2

r

r

p v

     r

2 1 v v

r

p r r

 

  

        

2

z

z

p v

     z

(23)

r r

r v

r r r

 

   

           

1

z

z

v v

z r

 

 

 

       

r z

zr

v v

z r

        

참조

관련 문서

9.6 Calculus Review: Functions of Several Variables 9.7 Gradients of a Scalar Field. Directional Derivative 9.8 Divergence of a Vector Field. 9.9 Curl of a Vector Field 9.9 Curl

Ironically, even though there exists some obstruction of positive or zero scalar curvature on a Riemannian manifold, results of [E.J.K.], say, Theorem 3.1, Theorem 3.5 and

Time series of vertical cross section of potential vorticity and wind vector calculated by Case 1 along the A-A' line indicated at Fig.. Same

Field : Spatial distribution of scalar and vector quantity Electric field and magnetic field.. 3-1

 The curl of the velocity field of a rotating rigid body has the direction of the axis of the rotation,.  and its magnitude equals twice the angular speed

For irrotational flow of ideal incompressible fluid, the Bernoulli’s equation applies over the whole flow field with a single energy line. Exact velocity field

A Method for Collision Avoidance of VLCC Tankers using Velocity Obstacles and Deep Reinforcement Learning.. 지도교수

The main feature of the formulation is the use of an integral approach for obtaining the velocity and pressure fields, in conjunction with a finite volume scheme and the