• 검색 결과가 없습니다.

Chap 16 Aldehydes and Ketones

N/A
N/A
Protected

Academic year: 2022

Share "Chap 16 Aldehydes and Ketones"

Copied!
11
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Chap 16 Aldehydes and Ketones

16.1 Structure and bonding 16.2 Nomenclature

16.3 Physical properties 16.4 Reactions

16.5 Addition of carbon nucleophiles 16.6 The Wittig reaction

16.7 Addition of oxygen nucleophiles 16.8 Addition of nitrogen nucleophiles 16.9 Keto-enol tautomerism

16.10 Oxidation 16.11 Reductions

16.12 Reactions at an α-carbon

16.1 Structure and Bonding

Aldehyde(RCHO) : 카보닐(C=O)기에 수소 및 탄소원자가 결합된 구조 Ketone(RCOR') : 카보닐(C=O)기에 두 탄소원자가 결합된 구조

HCHO CH3CHO CH3COCH3

Methanal Ethanal Propanone (Formaldehyde) (Acetaldehyde) (Acetone)

16.2 Nomenclature

A. IUPAC Nomenclature Aldehyde의 명명 :

i) 가장 긴 탄소 사슬을 모체로 선정하고, alkane의 어미 -e → -al 로 변환.

ii) Unsaturated aldehyde의 경우에는 삽입어 en- 혹은 -yn-을 사용하여 이중 결 합 혹은 삼중 결합의 위치를 표시함.

iii) -CHO가 고리에 직접 결합된 경우는 고리명칭에 carbaldehyde를 붙여줌

(2)

C6H5

O

H

O

H

O

H

CHO HO CHO

O

H

3-Methylbutanal 2-Propenal (2E)-3,7-Dimethyl-2,6-octadienal

trans-3-Phenyl-2-propenal Cyclopentanecarbaldehyde trans-4-Hydroxycyclohexanecarbaldehyde (Cinnamaldehyde)

O

Propanone 1-Phenyl-1-pentanone O

O O

O

H H

H

Formaldehyde Benzaldehyde Ethyl isoproryl ketone Dicyclohexyl ketone Acetophenone

O O

H OH

HS

OH OH

HO

OH

OH

O O O O O

NH2 O

3-Oxopropanoic acid 3-Oxobutanoic acid 4-Hydroxybutanoic acid

3-Aminobutanoic acid 2-Mercaptoethanol

Ketone의 명명 : 카보닐기를 포함하는 가장 긴 모체 탄소 사슬을 선정하고, alkane 의 어미 -e → -one로 변환

B. 관용명

Aldehyde : 카복실산의 -ic acid 혹은 -oic acid → -aldehyde로 변환 Ketone : 2개의 alkyl 혹은 aryl + ketone 으로 명명

C. IUPAC Names for More Complex Aldehydes and Ketones

작용기의 우선 순위 (Table 16.1) : Carboxylic acid > Aldehyde > Ketone >

Alcohol > Amine > Thiol

(3)

Nu + C O R'

R

C

C Nu

O

O Nu R

R R'

R'

+ aq HCl

C

C OH Nu

OH R

R R'

R'

Nu +

Tetrahedral intermediate

(Racemic) Racemic alcohol

R C R

O + H B fast R C R

O H

R C R

OH H Nu

Nu C

OH

R R

+ BH

16.3 Physical Properties

Carbonyl(C=O) : 탄소와 산소의 전기음성도 차이로 인하여 극성을 띰 C=O 작용기 사이의 dipole-dipole interaction

Table 16.2 : Boiling point of some compounds of similar molecular wight Bp : Carboxylic acid > Alcohol > Aldehyde, Ketone > Ether, Alkane

Table 16.3 : Physical properties of some aldehydes and ketones

16.4 Reactions

친전자성을 띠는 carbonyl carbon에 친핵체가 첨가반응을 일으켜 정사면체의 중간 체 생성 - Nucleophilic addition(친핵성 첨가반응)

1) Basic condition

2) Acidic condition

1st step : Protonation of carbonyl by H+ - Activation of C=O

Carbonyl C의 electrophilicity 증가 2nd step : Nucleophilic addition of Nu- - Formation of racemic alcohols

(4)

CH3CH2 MgBr +

H H

O Et2O

CH3CH2 CH2 O MgBr H3O+

CH3CH2CH2 OH 1-Propanol (1o OH)

Et2O H3O+

H O

+

MgBr O MgBr

OH

2o OH O

+ Ph MgBr THF Ph

OMgBr H3O+

Ph

OH

3o OH

16.5 Addition of Carbon Nucleophiles

탄소를 포함하는 친핵체 : R-Li > R-MgX > R-C≡C- > -C≡N

A. Addition of Grignard Reagents

Carbonyl 화합물에 RMgX 시약을 첨가하면 친핵성 첨가에 의하여 tetrahedral alkoxide의 중간체가 생성되고, aq HCl로 산성화하면 alcohol이 생성된다.

Reaction of acetaldehyde and acetone with Grignard reagent

예제 16.4 : Synthesis of 2-phenyl-2-butanol

(5)

H3O+ O

+ H C C Na

HO C CH

Na O C CH

O

+ K C N

O K

C N

H C N OH

C N

+ C N

C C

OH

N

H+

N Acrylonitrile 2 H2, Ni

NH2 OH

O + Li

H3O+

lithium alkoxide

O Li OH

B. Addition of Organolithium Compounds RLi : More reactive than RMgBr

Carbonyl 화합물과 친핵성 첨가 반응하여 alcohol을 생성함

C. Addition of Anions of Terminal Alkynes

말단 alkyne의 음이온은 알데하이드나 케톤의 carbonyl기에 친핵성 첨가하여 삼중 결합을 가진 alcohol을 생성한다.

D. Addition of Hydrogen Cyanide

알데하이드나 케톤에 KCN(or NaCN)/HCN을 첨가하면 친핵성 첨가에 의하여 cyanohydrin(동일한 탄소에 -OH기와 -CN기가 결합된 화합물)을 생성한다.

* Utility of cyanohydrin compound

(6)

O + Ph3P CH2 CH2 + Ph3P O Cyclohexanone Phosphonium

ylide

Methylenecyclohexene Triphenylphisphineoxide

Ph3P + CH3 I SN2

Ph3P CH3 I n-BuLi

Ph3P CH2 + CH3CH2CH2CH3 + LiI

Ph3P CH2

O + Ph3P CH2

CH2 + Ph3P O

O

PPh3 PPh3

O

Betaine Oxaphosphetane

Ph3P CHR : R = Alkyl (CH3, Et etc) cis-alkene이 주 생 성 물 로 얻 어 짐 R = -COCH3, -COOEt etc trans-alkene이 주 생 성 물 로 얻 어 짐

H

Ph Ph3P

O + Ph

Ph + + Ph3P O

cis-1-phenyl-2-butene trans-1-phenyl-2-butene 87% 13%

H

Ph Ph3P

O

+ Ph + Ph3P O

O OEt

O OEt

Ethyl trans-4-phenyl-2-butenoate (major product)

16.6 The Wittig Reaction

Phosphonium ylide(Ph3P=CHR)가 알데하이드나 케톤과 반응하여 alkene을 생성하 는 반응

1) Formation of phosphonium ylide

2) Wittig reaction

▘Control of cis-/trans-alkene by Wittig reaction

Phosphonium ylide의 구조가 주로 alkene의 configuration을 결정함

Phosphonium ylide가 공명 안정화되면 반응성이 감소하게 되어 평형상태가 반응을 지배하게 된다. trans-alkene은 cis-alkene보다 안정하므로 trans-가 주생성물로 얻어진다.

(7)

(MeO)3P Trimethylphosphite

Br CH2 C O

OEt α-bromoester

Br CH2 C O

R α-bromoketone

(MeO)2 P O

CH2 C O

OEt + MeBr α-Phosphonoester

(MeO)2 P O

CH2 C O

R + MeBr α-Phosphonoketone

(MeO)2 P O

CH2 C O

OEt (MeO)2 P

O

CH C

O

NaH OEt

O

H

O P

COOEt O

(OMe)2

P O

COOEt O

(OMe)2 COOEt

+ MeO P O

O OMe

only E-isomer Dimethylphosphate anion

◆ Horner-Emmons-Wadsworth reaction

염기 하에서 α-phosphonoester or α-phosphonoketone과 aldehyde or ketone을 반응시켜 alkene을 합성하는 반응

1) Preparation of α-phosphonoester or α-phosphonoketone

α-Phosphonoester or α-phosphonoketone의 유용성 : α-H이 acidic하므로 염기 에 의하여 쉽게 제거되어 stabilized anion을 생성함. Phosphonate로 안정화된 anion은 Wittig반응에서 거의 대부분 trans-alkene을 생성함

2) Wittig reaction

예제 16.5 :

CH3

O + Br

(8)

R' R

O + H2O K

R' R

OH OH

hydrate (geminal diol)

H R

O + R'OH

H R

OR' OH

H

R OR'

OR' hemiacetal acetal

R'OH

aldehyde

HO

H OH

OH OH

OH O

D-Glucose (open chain form)

O O

CH2OH HO

OH

HO OH

CH2OH

HO HO

OH OH +

β-Anomer of D-glucose (cyclic hemiactal)

α-Anomer of D-glucose (cyclic hemiacetal) 아 노 머 탄 소

R C

O

H + H+ R C

OH

H R C

OH O H R'OH

H R'

-H+

R C

OH

H OR'

hemiacetal

16.7 Addition of Oxygen Nucleophiles

A. Addition of Water: Formation of Carbonyl Hydrates

Aldehyde나 ketone에 H2O를 첨가하면 nucleophilic addition (친핵성 첨가) 에 의 하여 geminal diol이 생성된다.

Reversible reaction

Geminal diol - 일반적으로 unstable, easy dehydration

반응물보다 생성물의 steric repulsion이 증가함

K의 크기 : R,R'=H,H > R,R'=CH3,H > R,R'=CH3,CH3 (K=0.002)

B. Addition of Alcohols: Formation of Acetals

Hemiacetal : 일반적으로 unstable

5원자 혹은 6원자 고리의 hemiacetal은 상대적으로 angle strain이 작으므로 안정하게 존재함

1) Acid-catalyzed formation of hemiacetal

H+: catalyst, Reversible reaction, Warming 조건, 1 eq alcohol의 사용

(9)

R C OH

H

OR' H+

R C

OH2

H

OR' - H2O

R C OR'

H

R'OH

R C

OR'

H O H

R' -H+

R C

OR'

H OR'

acetal

O

H + M

O H

??

OH O

H

5-Hydroxy-5-phenylpentanal

O H

+ Br

O H

OH O

H

5-Hydroxy-5-phenylpentanal OH

HO

H+

Br BrMg

O O

O Mg

THF

O

O

O-MgBr O

HCl, H2O OH

HO R H

O H+

H

R R H R H

O H

HO O

HO

H

H2O O

HO

- H3O+ R H

O O

2) Acid-catalyzed formation of acetal

H+: catalyst, 가열조건, Aldehyde에 2 eq 알코올의 사용 Reversible reaction : Dean-Stark trap을 이용하여 반응을 완결시킴

Figure 16.1 : Dean-Stark trap for removing water by azeotrope(공비 혼합물)

Acetal : stable to basic reagent (LiAlH4, NaBH4, RMgBr)

→ Protecting group of carbonyl (C=O) unstable to acidic reagent

▘Formation of cyclic acetal

C. Acetals as Carbonyl-Protecting Groups

Synthesis of 5-hydroxy-5-phenylpentanal from 4-bromobutanal :

(10)

RCH2OH + O

H+

O RCH2O

Dihydropyran Tetrahydropyranyl ether : Stable to basic reagent (NaBH4, RMgBr)

CH3 C O

H + H2N H+

CH3 CH N

Imine (Schiff base)

CH3 C O

H + H2N

1단 계 : CH3 C

O N

H H

H

CH3 C N OH

H H

CH3 CH N Imine (Schiff base)

2단 계 : CH3 C

O N

H H

CH3 C N OH

H H

H+

H H

CH3 C N H H

+ H2O

+ H3O+

D. Tetrahydropyranyl Ethers: Protecting an Alcohol as an Acetal

Protection of ROH : Use of dihydropyran (DHP) → Tetrahydropyranyl (THP) ether

예제 16.7 : Mechanism of THP ether formation

16.8 Addition of Nitrogen Nucleophiles

A. Ammonia and Its Derivatives

1) NH3, RNH2(1차 아민)과 aldehyde 혹은 ketone과의 반응

친핵성을 갖는 NH3, RNH2는 산성 조건에서 aldehyde or ketone의 카보닐기와 반 응하여 imine(이민) 또는 다른 말로 Schiff base(Schiff 염기)를 생성함

Mechanism :

1단계 : Nucleophilic addition of aniline to acetaldehyde → Formation of tetrahedral carbonyl addition compound

2단계 : Tetrahedral 화합물의 OH의 protonation 및 dehydration H+ - catalyst

(11)

O + H2N H+ N H2 / Ni

N H

O + N H+ N

H + H2O

Cyclohexanone Piperidine Enamine

O + H2NNH2 NNH2 + H2O Hydrazine Hydrazone

▘Imine 화합물의 유용성

Hydrogenation에 의하여 C=N이 C-N으로 환원됨 Reduction amination (환원적 아민화) :

2) R2NH(2차 아민)과 aldehyde 혹은 ketone과의 반응

친핵성을 갖는 R2NH는 산성 조건에서 aldehyde or ketone의 카보닐기와 반응하여 enamine(엔아민)을 생성함

B. Hydrazine and Related Compounds

Aldehyde나 ketone이 hydrazine(H2NNH2)과 반응하면 Schiff base의 일종인 hydrazone(하이드라존)을 생성함

Table 16.4 : Derivatives of ammonia and hydrazine used for forming imines

참조

관련 문서

A series of substituted benzimidazoles and benzothiazoles were prepared through the one-pot reaction of o- phenylenediamine and o-aminothiophenol with various aldehydes in

The molecular architecture is completed by an r|5-cyclopentadienyl ligand and a semi-triply bridging carbonyl ligand on the molybdenum atom, and nine terminal carbonyl

1 The original method for the synthesis of DHPMs reported by Biginelli in 1893, involves the HCl-catalyzed condensation reaction of ethyl acetoacetate, aldehydes, and urea

Since the reagent in the presence of 1 equiv of boron trifluoride etherate was found to be a reactive reducing agent and reduced nonyl aldehyde, 4-methylcyclohexanone,

On the basis of the reduction results with 4 t 나)utylcy 이 。- hexanone, the remaining reductions were carried out with 0.5 molar equiv of zinc-modified cyanoborohydride in

Ozonolyses of 5a-c with one equivalent of ozone under similar reaction conditions afforded the unsaturated ozonides 7 and 8 as major products.8 It can be concluded

It is explained that as the concentration of Li + ions is increasing, the electrostatic interactions between tetrahedral lithium ions and neighbouring

3 We recently reported the diastereoselective synthesis of highly functionalized aldol products of glutarates 3 from the reaction of dihydropyran 1 with aldehydes