• 검색 결과가 없습니다.

Derivatives

N/A
N/A
Protected

Academic year: 2021

Share "Derivatives"

Copied!
15
0
0
더 보기 ( 페이지)

전체 글

(1)

Derivatives

Wanho Choi

(2)

Jacobian

∂u

∂v

∂u

x

∂v

x

∂u

x

∂v

y

∂u

x

∂v

z

∂u

y

∂v

x

∂u

y

∂v

y

∂u

y

∂v

z

∂u

z

∂v

x

∂u

z

∂v

y

∂u

z

∂v

z

Gradient

∂u

∂v

∂u

∂v

x

∂u

∂v

y

∂u

∂v

z

Chain Rule

∂u

∂v

= ∂

u

∂w

∂w

∂v

The Quotient Rule

∂x

f

g

⎝⎜

⎠⎟

=

∂ f

∂x

g

− f ∂

g

∂x

g

2

(3)

θ

∂x

i

= −

1

sin

θ

∂x

i

(

cos

θ

)

∂xi

(

cosθ

)

= −sinθ ∂θ ∂xi ∴ ∂ θ ∂xi = − 1 sinθ ∂ ∂xi

(

cosθ

)

(4)

∂x

b

T

x

( )

= b

∂x b T x

( )

= ∂ ∂x ⎡⎣⎢ bx by bz ⎤⎦⎥ x y z ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ = ∂∂x bxx + byy+ bzz

(

)

= ∂ ∂x

(

bxx + byy+ bzz

)

∂y

(

bxx+ byy+ bzz

)

∂z

(

bxx+ byy+ bzz

)

⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ == bx by bz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ = b

(5)

∂x

x

T

x

( )

= 2x

∂x x T x

( )

= ∂ ∂x x 2 + y2 + z2

(

)

= ∂ ∂x x 2 + y2 + z2

(

)

∂y x 2 + y2 + z2

(

)

∂z x 2 + y2 + z2

(

)

⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = 2x 2y 2z ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ = 2x

(6)

∂x

x

T

Ax

(

)

= Ax + A

T

x

xTAx = x y z a11 a12 a13 a21 a22 a23 a31 a32 a33 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ x y z ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ = x y z a11x + a12y + a13z a21x + a22y+ a23z a31x + a32y + a33z ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ = a11xx + a12xy+ a13xz + a21xy+ a22yy+ a23yz + a31zx + a32yz + a33zz = a11 a12 a13 a21 a22 a23 a31 a32 a33 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ x y z ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ + a11 a21 a31 a12 a22 a32 a13 a23 a33 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ x y z ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ = Ax + AT x ∴ ∂ ∂x x T Ax

(

)

= ∂ ∂x

(

a11xx + a12xy+ a13xz + a21xy+ a22yy+ a23yz+ a31zx+ a32yz + a33zz

)

= ∂ ∂x

(

a11xx + a12xy+ a13xz + a21xy+ a22yy+ a23yz+ a31zx + a32yz + a33zz

)

∂y

(

a11xx+ a12xy+ a13xz+ a21xy+ a22yy+ a23yz+ a31zx+ a32yz+ a33zz

)

∂z

(

a11xx+ a12xy+ a13xz+ a21xy+ a22yy+ a23yz+ a31zx+ a32yz + a33zz

)

⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = 2a11x + a12y+ a13z + a21y+ a31z a12x + a21x + 2a22y+ a23z + a32 a13x + a23y+ a31x + a32y+ 2a33z ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ = a11x + a12y+ a13z a21x + a22y + a23z a31x + a32y+ a33z ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥+ a11x+ a21y+ a31z a12x+ a22y+ a32 a13x + a23y + a33z ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥

(7)

∴ ∂ ∂x x T Ay

(

)

= ∂ ∂x ⎡⎣

(

a11xxyx + a12xxyy + a13xxyz

)

+ a

(

21xyyx + a22xyyy + a23xyyz

)

+ a

(

31xzyx + a32xzyy + a33xzyz

)

⎤⎦ = ∂ ∂xx ⎡⎣

(

a11xxyx + a12xxyy + a13xxyz

)

+ a

(

21xyyx + a22xyyy + a23xyyz

)

+ a

(

31xzyx + a32xzyy + a33xzyz

)

⎤⎦ ∂ ∂xy ⎡⎣

(

a11xxyx + a12xxyy + a13xxyz

)

+ a

(

21xyyx + a22xyyy + a23xyyz

)

+ a

(

31xzyx + a32xzyy + a33xzyz

)

⎤⎦ ∂ ∂xz ⎡⎣

(

a11xxyx + a12xxyy + a13xxyz

)

+ a

(

21xyyx + a22xyyy + a23xyyz

)

+ a

(

31xzyx + a32xzyy + a33xzyz

)

⎤⎦ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

∂x

x

T

Ay

(

)

= Ay

xTAy = xx xy xz ⎣⎢ ⎤⎦⎥ a11 a12 a13 a21 a22 a23 a31 a32 a33 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ yx yy yz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ = xx xy xz ⎣⎢ ⎤⎦⎥ a11yx + a12yy + a13yz a21yx + a22yy + a23yz a31yx + a32yy + a33yz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ = a

(

11xxyx + a12xxyy + a13xxyz

)

+ a

(

21xyyx + a22xyyy + a23xyyz

)

+ a

(

31xzyx + a32xzyy + a33xzyz

)

= a11yx + a12yy + a13yz a21yx + a22yy + a23yz a31yx + a32yy + a33yz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ = a11 a12 a13 a21 a22 a23 a31 a32 a33 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ yx yy yz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ = Ay

(8)

f (x)

=

1

2

x

T

Ax

− b

T

x

+ c ⇒ ∂

∂x

f (x)

= Ax − b

A : symmetic n by n matrix

∂x f (x) = ∂∂x 1 2 x T Ax− bTx+ c ⎛ ⎝⎜ ⎞⎠⎟ = ∂x∂ 1 2 x T Ax ⎛ ⎝⎜ ⎞⎠⎟ − ∂x

( )

bTx = 1 2 Ax+ A T x

(

)

− b = 1 2

(

Ax+ Ax

)

− b = Ax − b

(9)

∂x

1

x

⎝⎜

⎠⎟

= −

1

x

x

x

T

x

∂x 1 x ⎛ ⎝⎜ ⎞ ⎠⎟ = ∂ ∂x 1 x2 + y2 + z2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ∂ ∂y 1 x2 + y2 + z2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ∂ ∂z 1 x2 + y2 + z2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = 0− ∂ ∂x x 2 + y2 + z2 x2 + y2 + z2 0− ∂ ∂y x 2 + y2 + z2 x2 + y2 + z2 0− ∂ ∂z x 2 + y2 + z2 x2 + y2 + z2 ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = − 1 x2 + y2 + z2 ∂ ∂x x 2 + y2 + z2 ∂ ∂y x 2 + y2 + z2 ∂ ∂z x 2 + y2 + z2 ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = − 1 x2 + y2 + z2 2x 2 x2 + y2 + z2 2y 2 x2 + y2 + z2 2z 2 x2 + y2 + z2 ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = − 1 x2 + y2 + z2 1 x2 + y2 + z2 x y z ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ = − 1 x x xTx

(10)

∂x

x

x

⎝⎜

⎠⎟

=

1

x

I

xx

T

x

T

x

⎝⎜

⎠⎟

∂x x x ⎛ ⎝⎜ ⎞ ⎠⎟ = ∂ ∂x x x2 + y2 + z2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ∂yx x2 + y2 + z2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ∂zx x2 + y2 + z2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ∂ ∂x y x2 + y2 + z2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ∂yy x2 + y2 + z2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ∂zy x2 + y2 + z2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ∂ ∂x z x2 + y2 + z2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ∂yz x2 + y2 + z2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ∂zz x2 + y2 + z2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = ∂x ∂x x 2 + y2 + z2 − x ∂ ∂x x 2 + y2 + z2 x2 + y2 + z2 ∂x ∂y x 2 + y2 + z2 − x ∂ ∂y x 2 + y2 + z2 x2 + y2 + z2 ∂x ∂z x 2 + y2 + z2 − x ∂ ∂z x 2 + y2 + z2 x2 + y2 + z2 ∂y ∂x x 2 + y2 + z2 − y ∂ ∂x x 2 + y2 + z2 x2 + y2 + z2 ∂y ∂y x 2 + y2 + z2 − y ∂ ∂y x 2 + y2 + z2 x2 + y2 + z2 ∂y ∂z x 2 + y2 + z2 − y ∂ ∂z x 2 + y2 + z2 x2 + y2 + z2 ∂z ∂x x 2 + y2 + z2 − z ∂ ∂x x 2 + y2 + z2 x2 + y2 + z2 ∂z ∂y x 2 + y2 + z2 − z ∂ ∂y x 2 + y2 + z2 x2 + y2 + z2 ∂z ∂z x 2 + y2 + z2 − z ∂ ∂z x 2 + y2 + z2 x2 + y2 + z2 ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = x2 + y2 + z2 − x 2 x2 + y2 + z2 2x x2 + y2 + z2 0− x 2 x2 + y2 + z2 2y x2 + y2 + z2 0− x 2 x2 + y2 + z2 2z x2 + y2 + z2 0− y 2 x2 + y2 + z2 2x x2 + y2 + z2 x2 + y2 + z2 − y 2 x2 + y2 + z2 2y x2 + y2 + z2 0− y 2 x2 + y2 + z2 2z x2 + y2 + z2 0− z 2 x2 + y2 + z2 2x x2 + y2 + z2 0− z 2 x2 + y2 + z2 2y x2 + y2 + z2 x2 + y2 + z2 − z 2 x2 + y2 + z2 2z x2 + y2 + z2 ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = x2 + y2 + z2 0 0 0 x2 + y2 + z2 0 0 0 x2 + y2 + z2 ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ − xx x2 + y2 + z2 x2 + y2 + z2 xy x2 + y2 + z2 x2 + y2 + z2 xz x2 + y2 + z2 x2 + y2 + z2 xy x2 + y2 + z2 x2 + y2 + z2 yy x2 + y2 + z2 x2 + y2 + z2 yz x2 + y2 + z2 x2 + y2 + z2 zx x2 + y2 + z2 x2 + y2 + z2 yz x2 + y2 + z2 x2 + y2 + z2 zz x2 + y2 + z2 x2 + y2 + z2 ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = 1 x2 + y2 + z2 1 0 0 0 1 0 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ − 1 x2 + y2 + z2 xx xy xz xy yy yz zx yz zz ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎛ ⎝ ⎜ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ⎟ = 1 x IxxT xTx ⎛ ⎝⎜ ⎞ ⎠⎟

(11)

∂x

[

f (x)x

]

= f (x)I + x ∂

⎣⎢

∂x

f (x)

⎦⎥

T ∂ ∂x

[

f (x)x

]

= ∂ ∂x

[

f (x)x

]

∂y

[

f (x)x

]

∂z

[

f (x)x

]

∂x

[

f (x)y

]

∂y

[

f (x)y

]

∂z

[

f (x)y

]

∂x

[

f (x)z

]

∂y

[

f (x)z

]

∂z

[

f (x)z

]

⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = x∂x

[

f (x)

]

+ f (x) x∂y

[

f (x)

]

x∂z

[

f (x)

]

y∂x

[

f (x)

]

y∂y

[

f (x)

]

+ f (x) y∂z

[

f (x)

]

z∂x

[

f (x)

]

z∂y

[

f (x)

]

z∂z

[

f (x)

]

+ f (x) ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = f (x) 0 0 0 f (x) 0 0 0 f (x) ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ + x∂x

[

f (x)

]

x∂y

[

f (x)

]

x∂z

[

f (x)

]

y∂x

[

f (x)

]

y∂y

[

f (x)

]

y∂z

[

f (x)

]

z∂x

[

f (x)

]

z∂y

[

f (x)

]

z∂z

[

f (x)

]

⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = f (x) 1 0 0 0 1 0 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ + x y z ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ∂ ∂x

[

f (x)

]

∂y

[

f (x)

]

∂z

[

f (x)

]

⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ = f (x)I + x ∂ ∂x f (x) ⎡ ⎣⎢ ⎤ ⎦⎥ T

(12)

∂x

i

x

ij

= −

x

ij

x

ij

(

x

ij

= x

j

− x

i

)

∂xi xij = ∂ ∂xi (xj − xi) 2 + (y j − yi) 2 + (z j − zi) 2 ∂ ∂yi (xj − xi) 2 + (y j − yi) 2 + (z j − zi) 2 ∂ ∂zi (xj − xi) 2 + (y j − yi) 2 + (z j − zi) 2 ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = 1 2 (xj − xi)2 + (yj − yi)2 + (zj − zi)2 ∂ ∂xi (xj − xi) 2 ⎡⎣ ⎤⎦ ∂ ∂yi (yj − yi) 2 ⎡⎣ ⎤⎦ ∂ ∂zi (zj − zi) 2 ⎡⎣ ⎤⎦ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ == 1 2 (xj − xi)2 + (yj − yi)2 + (zj − zi)2 −2xi −2yi −2zi ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ = −1 (xj − xi)2 + (yj − yi)2 + (zj − zi)2 xi yi zi ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ = − xij xij

(13)

∂( u )

∂w

= ∂

u

∂w

⎝⎜

⎠⎟

T

u

u

∂( u ) ∂w = ∂ ∂wx ( ux2 + uy2 + uz2 ) ∂ ∂wy ( ux2 + uy2 + uz2 ) ∂ ∂wz ( ux 2 + u y 2 + u z 2 ) ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = 1 2 ux2 + uy2 + uz2 ∂ ∂wx (ux2 + uy2 + uz2) ∂ ∂wy (ux2 + uy2 + uz2) ∂ ∂wz (ux 2 + u y 2 + u z 2 ) ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = 1 2 ux2 + uy2 + uz2 2ux ∂ux ∂wx + 2uy ∂uy ∂wx + 2uz ∂uz ∂wx 2ux ∂ux ∂wy + 2uy ∂uy ∂wy + 2uz ∂uz ∂wy 2ux ∂ux ∂wz + 2uy ∂uy ∂wz + 2uz ∂uz ∂wz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = 1 ux2 + uy2 + uz2 ux ∂ux ∂wx + uy ∂uy ∂wx + uz ∂uz ∂wx ux ∂ux ∂wy + uy ∂uy ∂wy + uz ∂uz ∂wy ux ∂ux ∂wz + uy ∂uy ∂wz + uz ∂uz ∂wz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

u

= (u

x

,u

y

,u

z

)

T

,w

= (w

x

,w

y

,w

z

)

T = 1 ux2 + uy2 + uz2 ∂ux ∂wx ∂uy ∂wx ∂uz ∂wx ∂ux ∂wy ∂uy ∂wy ∂uz ∂wy ∂ux ∂wz ∂uy ∂wz ∂uz ∂wz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ux uy uz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ == 1 ux2 + uy2 + uz2 ∂ux ∂wx ∂ux ∂wy ∂ux ∂wz ∂uy ∂wx ∂uy ∂wy ∂uy ∂wz ∂uz ∂wx ∂uz ∂wy ∂uz ∂wz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ T ux uy uz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ = ∂u ∂w ⎛ ⎝⎜ ⎞⎠⎟ T u u

(14)

∂(u⋅v)

∂w

= ∂

u

∂w

⎝⎜

⎠⎟

T

v

+ ∂

v

∂w

⎝⎜

⎠⎟

T

u

∂(u⋅v) ∂w = ∂ ∂wx

(

uxvx + uyvy + uzvz

)

∂wy

(

uxvx + uyvy + uzvz

)

∂wz

(

uxvx + uyvy + uzvz

)

⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = ∂ux ∂wx vx + ux ∂vx ∂wx ⎛ ⎝⎜ ⎞ ⎠⎟ + ∂uy ∂wx vy + uy ∂vy ∂wx ⎛ ⎝⎜ ⎞ ⎠⎟ + ∂uz ∂wx vz + uz ∂vz ∂wx ⎛ ⎝⎜ ⎞ ⎠⎟ ∂ux ∂wy vx + ux ∂vx ∂wy ⎛ ⎝⎜ ⎞ ⎠⎟ + ∂uy ∂wy vy + uy ∂vy ∂wy ⎛ ⎝⎜ ⎞ ⎠⎟ + ∂uz ∂wy vz + uz ∂vz ∂wy ⎛ ⎝⎜ ⎞ ⎠⎟ ∂ux ∂wz vx + ux ∂vx ∂wz ⎛ ⎝⎜ ⎞ ⎠⎟ + ∂uy ∂wz vy + uy ∂vy ∂wz ⎛ ⎝⎜ ⎞ ⎠⎟ + ∂uz ∂wz vz + uz ∂vz ∂wz ⎛ ⎝⎜ ⎞ ⎠⎟ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = ∂ux ∂wx vx + ∂uy ∂wx vy ∂uz ∂wx vz ⎛ ⎝⎜ ⎞ ⎠⎟ + ∂ vx ∂wx ux + ∂vy ∂wx uy + ∂vz ∂wx uz ⎛ ⎝⎜ ⎞ ⎠⎟ ∂ux ∂wy vx + ∂uy ∂wy vy + ∂uz ∂wy vz ⎛ ⎝⎜ ⎞ ⎠⎟ + ∂ vx ∂wy ux + ∂vy ∂wy uy + ∂vz ∂wy uz ⎛ ⎝⎜ ⎞ ⎠⎟ ∂ux ∂wz vx + ∂uy ∂wz vy + ∂uz ∂wz vz ⎛ ⎝⎜ ⎞ ⎠⎟ + ∂ vx ∂wz ux + ∂vy ∂wz uy + ∂vz ∂wz uz ⎛ ⎝⎜ ⎞ ⎠⎟ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

u

= (u

x

,u

y

,u

z

)

T

,v

= (v

x

,v

y

,v

z

)

T

,w

= (w

x

,w

y

,w

z

)

T = ∂ux ∂wx vx + ∂uy ∂wx vy + ∂uz ∂wx vz ∂ux ∂wy vx + ∂uy ∂wy vy + ∂uz ∂wy vz ∂ux ∂wz vx + ∂uy ∂wz vy + ∂uz ∂wz vz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ + ∂vx ∂wx ux + ∂vy ∂wx uy + ∂vz ∂wx uz ∂vx ∂wy ux + ∂vy ∂wy uy + ∂vz ∂wy uz ∂vx ∂wz ux + ∂vy ∂wz uy + ∂vz ∂wz uz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = ∂ux ∂wx ∂uy ∂wx ∂uz ∂wx ∂ux ∂wy ∂uy ∂wy ∂uz ∂wy ∂ux ∂wz ∂uy ∂wz ∂uz ∂wz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ vx vy vz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ + ∂vx ∂wx ∂vy ∂wx ∂vz ∂wx ∂vx ∂wy ∂vy ∂wy ∂vz ∂wy ∂vx ∂wz ∂vy ∂wz ∂vz ∂wz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ux uy uz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ = ∂u ∂w ⎛ ⎝⎜ ⎞⎠⎟ T v + ∂v ∂w ⎛ ⎝⎜ ⎞⎠⎟ T u = ∂ux ∂wx ∂ux ∂wy ∂ux ∂wz ∂uy ∂wx ∂uy ∂wy ∂uy ∂wz ∂uz ∂wx ∂uz ∂wy ∂uz ∂wz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ T vx vy vz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ + ∂vx ∂wx ∂vx ∂wy ∂vx ∂wz ∂vy ∂wx ∂vy ∂wy ∂vy ∂wz ∂vz ∂wx ∂vz ∂wy ∂vz ∂wz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ T ux uy uz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥

(15)

∂(u × v)

∂w

= u

*

∂v

∂w

− v

*

∂u

∂w

u

= (u

x

,u

y

,u

z

)

T

,v

= (v

x

,v

y

,v

z

)

T

,w

= (w

x

,w

y

,w

z

)

T

u

*

=

0

−u

z

u

y

u

z

0

−u

x

−u

y

u

x

0

, v

*

=

0

−v

z

v

y

v

z

0

−v

x

−v

y

v

x

0

∂(u × v) ∂w = ∂∂w uyvz − uzvy uzvx − uxvz uxvy − uyvx ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ = ∂ ∂wx (uyvz − uzvy) ∂ ∂wy (uyvz − uzvy) ∂ ∂wz (uyvz − uzvy) ∂ ∂wx (uzvx − uxvz) ∂ ∂wy (uzvx − uxvz) ∂ ∂wz (uzvx − uxvz) ∂ ∂wx (uxvy − uyvx) ∂ ∂wy (uxvy − uyvx) ∂ ∂wz (uxvy − uyvx) ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = ∂uy ∂wx vz + uy ∂vz ∂wx∂uz ∂wx vy − uz ∂vy ∂wx ⎛ ⎝⎜ ⎞ ⎠⎟ ∂uy ∂wy vz + uy ∂vz ∂wy∂uz ∂wy vy − uz ∂vy ∂wy ⎛ ⎝⎜ ⎞ ⎠⎟ ∂uy ∂wz vz + uy ∂vz ∂wz∂uz ∂wz vy − uz ∂vy ∂wz ⎛ ⎝⎜ ⎞ ⎠⎟ ∂uz ∂wx vx + uz ∂vx ∂wx − ∂ ux ∂wx vz − ux ∂vz ∂wx ⎛ ⎝⎜ ⎞ ⎠⎟ ∂uz ∂wy vx + uz ∂vx ∂wy − ∂ ux ∂wy vz − ux ∂vz ∂wy ⎛ ⎝⎜ ⎞ ⎠⎟ ∂uz ∂wz vx + uz ∂vx ∂wz − ∂ ux ∂wz vz − ux ∂vz ∂wz ⎛ ⎝⎜ ⎞ ⎠⎟ ∂ux ∂wx vy + ux ∂vy ∂wx∂uy ∂wx vx − uy ∂vx ∂wx ⎛ ⎝⎜ ⎞ ⎠⎟ ∂ux ∂wy vy + ux ∂vy ∂wy∂uy ∂wy vx − uy ∂vx ∂wy ⎛ ⎝⎜ ⎞ ⎠⎟ ∂ux ∂wz vy + ux ∂vy ∂wz∂uy ∂wz vx − uy ∂vx ∂wz ⎛ ⎝⎜ ⎞ ⎠⎟ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = −uz ∂vy ∂wx + uy ∂vz ∂wx ⎛ ⎝⎜ ⎞ ⎠⎟ − −vz ∂uy ∂wx + vy ∂uz ∂wx ⎛ ⎝⎜ ⎞ ⎠⎟ −uz ∂vy ∂wy + uy ∂vz ∂wy ⎛ ⎝⎜ ⎞ ⎠⎟ − vz ∂uy ∂wy + vy ∂uz ∂wy ⎛ ⎝⎜ ⎞ ⎠⎟ −uz ∂vy ∂wz + uy ∂vz ∂wz ⎛ ⎝⎜ ⎞ ⎠⎟ − vz ∂uy ∂wz + vy ∂uz ∂wz ⎛ ⎝⎜ ⎞ ⎠⎟ uz ∂vx ∂wx − ux ∂vz ∂wx ⎛ ⎝⎜ ⎞ ⎠⎟ − vz ∂ux ∂wx − vx ∂uz ∂wx ⎛ ⎝⎜ ⎞ ⎠⎟ uz ∂vx ∂wy − ux ∂vz ∂wy ⎛ ⎝⎜ ⎞ ⎠⎟ − vz ∂ux ∂wy − vx ∂uz ∂wy ⎛ ⎝⎜ ⎞ ⎠⎟ uz ∂vx ∂wz − ux ∂vz ∂wz ⎛ ⎝⎜ ⎞ ⎠⎟ − vz ∂ux ∂wz − vx ∂uz ∂wz ⎛ ⎝⎜ ⎞ ⎠⎟ −uy ∂vx ∂wx + ux ∂vy ∂wx ⎛ ⎝⎜ ⎞ ⎠⎟ − vy ∂ux ∂wx + vx ∂uy ∂wx ⎛ ⎝⎜ ⎞ ⎠⎟ −uy ∂vx ∂wy + ux ∂vy ∂wy ⎛ ⎝⎜ ⎞ ⎠⎟ − vy ∂ux ∂wy + vx ∂uy ∂wy ⎛ ⎝⎜ ⎞ ⎠⎟ −uy ∂vx ∂wz + ux ∂vy ∂wz ⎛ ⎝⎜ ⎞ ⎠⎟ − vy ∂ux ∂wz + vx ∂uy ∂wz ⎛ ⎝⎜ ⎞ ⎠⎟ ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = −uz ∂vy ∂wx + uy ∂vz ∂wx −uz ∂vy ∂wy + uy ∂vz ∂wy −uz ∂vy ∂wz + uy ∂vz ∂wz uz ∂vx ∂wx − ux ∂vz ∂wx uz ∂vx ∂wy − ux ∂vz ∂wy uz ∂vx ∂wz − ux ∂vz ∂wz −uy ∂vx ∂wx + ux ∂vy ∂wx −uy ∂vx ∂wy + ux ∂vy ∂wy −uy ∂vx ∂wz + ux ∂vy ∂wz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ − −vz ∂uy ∂wx + vy ∂uz ∂wx vz ∂uy ∂wy + vy ∂uz ∂wy vz ∂uy ∂wz + vy ∂uz ∂wz vz ∂ux ∂wx − vx ∂uz ∂wx vz ∂ux ∂wy − vx ∂uz ∂wy vz ∂ux ∂wz − vx ∂uz ∂wz vy ∂ux ∂wx + vx ∂uy ∂wx vy ∂ux ∂wy + vx ∂uy ∂wy vy ∂ux ∂wz + vx ∂uy ∂wz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = 0 −uz uy uz 0 −ux −uy ux 0 ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ∂vx ∂wx ∂vx ∂wy ∂vx ∂wz ∂vy ∂wx ∂vy ∂wy ∂vy ∂wz ∂vz ∂wx ∂vz ∂wy ∂vz ∂wz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ − 0 −vz vy vz 0 −vx −vy vx 0 ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ∂ux ∂wx ∂ux ∂wy ∂ux ∂wz ∂uy ∂wx ∂uy ∂wy ∂uy ∂wz ∂uz ∂wx ∂uz ∂wy ∂uz ∂wz ⎡ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ = u* ∂v ∂w − v * ∂u ∂w

참조

관련 문서

Despite its short history, as the premier United Nations body dedicated to human rights, the Human Rights Council has lived up to the noble mandate entrusted by

경영자가 조직의 중요한 문제에 대한 가장 좋은 해결책을 알고 있고 이를 실행할 수 있는 충분한 권한이 있다면 의사결정과 집행과정에 다른 경영자를 참여시키는

미국과 같은 나라에서 잘 작동하는 경영관행, 조정 및 통제 방법은 일본이나 중국과 같은 나라에서는 비효과적이거나 심지어는 모욕적으로 느껴질 수도 있다.

 조직의 상황배경적 및 구조적 차원을 이해해야 하는 이유는 조직의 효과성을 효율적으로 달성할 수 있는 조직설계

A convenient liquid chromatographic method for the separation of α-amino acid esters as benzophenone Schiff base derivatives on coated chiral stationary phases

Propanoic acid derivatives: ibuprofen, ketoprofen, naproxen, flurbiprofen, dexibuprofen and loxoprofen were selected as model drugs for the study..

We found spiropyran derivatives have photoswitching properties in both fluorescence and singlet oxygen generation in aqueous solutions and cells, and

Dong Jun Park, Hyun Gil Kim, Yang Il Jung, Jung Hwan Park, Byoung Kwon Choi, Young Ho Lee, and Jae

{ In SISO control, too, controllers designed based on a process model always shows better performance than modelless ones. Especially, for processes with long time-delay

The DEVS formalism, developed by Zeigler, supports specification of discrete event models in hierarchical, mod- ular manner.3 And DEVSim++ is an object-oriented

Adenoviral-mediated hepatic overexpression of miR-34a in mice in vivo reduced NAMPT/NAD + levels, and consequently SIRT1 deacetylase activity, and increased acetylation of

socioeconomic status and thyroid cancer prevalence; Based on the korean National Health and Nutrition Examination Survey2010-2011. Jung YI, Kim

최근 조직구성원들로 하여금 자신이 일하고 싶은 부서를 자유롭게 선택하도록 함으로서 동기와 열정을 불러일으키는 조직형태가

Nordstrom의 구조는 경영자들이 하위 계층의 종업원들에게 권한을 위양하고 그들을 지원하는 것이 중요하게 인식하는 조직문화를

최고의 전략은 제품이나 서비스가 시장에서 경쟁우위를 지닐 수 있는 독특성을 지니도록 차별화하는 것이다.

 인플루엔자 유행주의보가 발령됨에 따라 일가족이 백신접종을 위해 병원에 왔지만 모두들 주사는 싫다고 한다... Won Suk

더구나 국내 ETF시장이 레버리지/인버스 또는 테마성 상품이 두각을 보이면서 단 기 투자용 시장으로 인식되고 있는 것도 Smart Beta ETF의 성장을 제약하는 요인임. Smart

[r]

Substitute the series with undetermined coefficients and its derivatives.. [Reference] 5.4 Bessel’s Equation.. 11.6 Orthogonal Series.. 11.6 Orthogonal Series..

▶ 데이터 부족 문제를 해결하기 위한 Idaho National Lab(INL)의

Fluorescence Amplication and Development of VOCs Sensor Based on Anisotropic Porous Silicon Derivatives..

• Many physical behavior can be expressed as differential equation (containing derivatives of unknown function)..

socioeconomic status and thyroid cancer prevalence; Based on the korean National Health and Nutrition Examination Survey2010-2011. Jung YI, Kim

P01B24 Preliminary Drop Time Analysis of a Control Rod Using CFD Code Myoung Hwan Choi, Jin Seok Park, and Won Jae Lee(KAERI)..