• 검색 결과가 없습니다.

SCHATTEN-HERZ CLASS TOEPLITZ OPERATORS ON WEIGHTED BERGMAN SPACES INDUCED BY DOUBLING WEIGHTS

N/A
N/A
Protected

Academic year: 2021

Share "SCHATTEN-HERZ CLASS TOEPLITZ OPERATORS ON WEIGHTED BERGMAN SPACES INDUCED BY DOUBLING WEIGHTS"

Copied!
13
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

https://doi.org/10.4134/BKMS.b200561 pISSN: 1015-8634 / eISSN: 2234-3016

SCHATTEN-HERZ CLASS TOEPLITZ OPERATORS ON WEIGHTED BERGMAN SPACES INDUCED BY

DOUBLING WEIGHTS

Juntao Du and Songxiao Li

Abstract. Schatten-Herz class Toeplitz operators on weighted Bergman spaces induced by doubling weights are investigated in this paper.

1. Introduction

Let D be the open unit disk in the complex plane, and H(D) the class of all functions analytic on D. For any z ∈ D and r > 0, let D(z, r) = {w ∈ D : β(z, w) < r} be the Bergman disk. Here β(·, ·) is the Bergman metric on D. If {aj}∞j=1⊂ D satisfying infi6=jβ(ai, aj) ≥ s > 0, we say that {aj}∞j=1⊂ D is

s-separated.

A function ω : D → [0, ∞) is called a weight if it is positive and integrable. A weight ω is radial if ω(z) = ω(|z|) for all z ∈ D. Let ω be a radial weight and

ˆ

ω(r) =R1

r ω(s)ds for r ∈ [0, 1). We say that ω is a doubling weight, denoted by

ω ∈ ˆD, if there is a constant C > 0 such that ˆω(r) < C ˆω(1+r

2 ) when 0 ≤ r < 1.

If there exist K > 1 and C > 1 such that ˆω(r) ≥ C ˆω(1 −1−rK ) when 0 ≤ r < 1, we say that ω is a reverse doubling weight, denoted by ω ∈ ˇD. We say that ω is a regular weight, denoted by ω ∈ R, if there exist C > 1 and δ ∈ (0, 1), such that 1 C < ˆ ω(r) (1 − r)ω(r) < C, when δ < r < 1. We denote by D = ˆDT ˇ

D. From [9], we see that R ⊂ D. More details about R, D and ˆD can be found in [7–11].

When 0 < p < ∞ and ω ∈ ˆD, the weighted Bergman space Ap

ω is the space

of all f ∈ H(D) such that kf kpAp

ω =

Z

D

|f (z)|pω(z)dA(z) < ∞,

Received June 26, 2020; Accepted November 2, 2020.

2010 Mathematics Subject Classification. Primary 30H20, 47B35.

Key words and phrases. Weighted Bergman space, Toeplitz operator, doubling weight, Schatten-Herz class.

The project was supported by NNSF of China (No.11720101003). c

2021 Korean Mathematical Society

(2)

where dA is the normalized Lebesgue area measure on D. When ω(z) = (1 − |z|2)α(α > −1), the space Ap

ω becomes the classical weighted Bergman space

Ap

α. When α = 0, we will write Apα = Ap. Suppose 0 < p ≤ ∞ and µ is a

positive Borel measure on D. Let Lp

µ denote the Lebesgue space defined in a

standard way. Meanwhile, Lp

τ denotes Lpµfor dµ(z) = (1 − |z|2)τdA(z) for some

real number τ . Let ωs = R1 0 r sω(r)dr and Bω z(w) = 1 2 P∞ k=0 (wz)k ω2k+1. Then B ω z is the

repro-ducing kernel for A2

ω, which means that for any f ∈ A2ω (see [10]),

f (z) = hf, BzωiA2 ω = Z D f (w)Bω z(w)ω(w)dA(w).

Let µ be a positive Borel measure on D. Let f ∈ H(D) and z ∈ D. The Toeplitz operator Tµ and the Berezin transform fTµ of Tµ are defined by

Tµf (z) = Z D f (ξ)Bω z(ξ)dµ(ξ), Tfµ(z) = hTµBzω, BzωiA2 ω kBω zk2A2 ω , respectively. For k = 0, 1, 2, . . ., let Λk = {z ∈ D : 1 − 21k ≤ |z| < 1 − 1 2k+1} and χk the

characteristic function of Λk. Let dλ(z) = (1−|z|dA(z)2)2 be the M¨obious invariant

area measure on D. For 0 < p ≤ ∞ and 0 ≤ q ≤ ∞, let Kp

q(λ) denote the Herz

space, which consists of all measurable functions f such that kf kKpq(λ) = k{kf kLpλχk} ∞ k=0klq < ∞. Note that Kp p(λ) = L p

λ. Here, lq(0 ≤ q ≤ ∞) consists of all complex sequences

{ak}∞k=1such that k{ak}klq < ∞, where

k{ak}klq =    (P∞ k=1|ak|q) 1 q, 0 < q < ∞; supk≥1|ak|, q = ∞; lim supk→∞|ak|, q = 0.

Let j = 0, 1, 2, . . . and λj= inf{kTµ−RkA2

ω→A2ω: rank(R) ≤ j}. If {λj} ∞ j=0∈

lp for some p ∈ (0, ∞), we say that T

µbelongs to the Schatten p-class, denoted

by Tµ∈ Sp(A2ω). We denote by S∞the class of all bounded linear operators on

A2

ω. For 0 < p ≤ ∞ and 0 ≤ q ≤ ∞, Tµ is said to belong to the Schatten-Herz

class, denoted by Sp,q, if Tµχk∈ Spand

kTµkSp,q = k{kTµχkkSp} ∞

k=0klq< ∞.

Here kTµχkkSp means the Schatten p-class norm of Tµχk on A 2

ω, see [12] for

example. In [4], Loaiza, L´opez-Garc´ıa and P´erez-Esteva considered Schatten-Herz class Toeplitz operators on A2for the first time. For more study on Herz

spaces and Schatten-Herz class Toeplitz operators, see [1–6].

In [9, 11], Pel´aez, R¨atty¨a and Sierra investigated the boundedness, com-pactness and Schatten class Toeplitz operators on Bergman spaces induced by

(3)

doubling weights. In this paper, we investigate Schatten-Herz class Toeplitz operators on A2ωwith ω ∈ ˆD. The main result of this paper is stated as follows. Theorem 1.1. Suppose 0 < p ≤ ∞, 0 ≤ q ≤ ∞, r > 0, ω ∈ ˆD and µ is a positive Borel measure. Let {aj} ⊂ D such that D = ∪∞j=1D(aj, r) and {aj} are

s-separated for some 0 < s < r < ∞. Let

c µr(z) = µ(D(z, r)) (1 − |z|)ˆω(z) and k{µcr(aj)}klpq = k{k{(µcrχk)(aj)} ∞ j=1klp}∞k=0klq.

(i) The following statements are equivalent. (a) Tµ∈ Sp,q;

(b) cµr∈ Kpq(λ);

(c) k{cµr(aj)}klpq < ∞.

Moreover,

kTµkSp,q ≈ kµcrkKqp(λ)≈ k{cµr(aj)}klpq.

(ii) If ω ∈ D such that (1−|·|)(1−|·|)pω(·)ˆ2 p ∈ D, then Tµ ∈ Sp,q if and only if

f

Tµ∈ Kpq(λ).

Moreover,

kTµkSp,q ≈ kfTµkKpq(λ).

Throughout this paper, the letter C will denote constants and may differ from one occurrence to the other. The notation A . B means that there is a positive constant C such that A ≤ CB. The notation A ≈ B means A . B and B . A.

2. The proof of main result

In this section, we prove the main result in this paper. For this purpose, let’s recall some related definitions and state some lemmas.

For j = 0, 1, 2, . . . and k = 0, 1, 2, . . . , 2j− 1, let

Ij,k=  eiθ: 2πk 2j ≤ θ < 2π(k + 1) 2j  and Rj,k=  z ∈ D : |z|z ∈ Ij,k, 1 − |Ij,k| 2π ≤ |z| < 1 − |Ij,k| 4π  .

Lemma 2.1. Suppose 0 < s < r < ∞ are given and {an}∞n=1 is s-separated.

Then the following statements hold.

(i) For any z ∈ D, there exist at most N1 = N1(r) elements of {Rj,k}

intersecting with D(z, r);

(ii) For any Rj,k, there exist at most N2= N2(r, s) elements of {D(an, r)}

(4)

Proof. (i) Suppose z ∈ Λi and w ∈ D(z, r). Then we have 1 − |z| ≈ 1 − |w|.

So there exists M = M (r) such that w ∈ ∪i+Mm=i−MΛm. Here, let Λm = ∅ if

m < 0. By Proposition 4.4 in [12], D(z, r) is an Euclidean disk with center C0= 1−(tanh r)2

1−(tanh r)2|z|2z and radius R0= 1−|z| 2

1−(tanh r)2|z|2 tanh r. So, for all w ∈ D(z, r), we

have |Arg(zw)| ≤ arcsinR0 C0 ≈ 1 − |z| as |z| → 1. When j = i − M, . . . , i + M and k = 1, 2, . . . , 2j − 1, |I j,k| ≈ 21i ≈ 1 − |z|.

So, there exists N1= N1(r) such that there are at most N1elements of {Rj,k}

intersecting with D(z, r). (ii) Let ct,j,k= (1 −21t)e

2πik

2j . For any w ∈ Rj,k as j → ∞, we have

β(cj,j,k, w) ≤ β(cj,j,k, cj+1,j,k) + β(cj,j,k, cj,j,k+1) . 1.

So, there exists R0> 0, for all j = 0, 1, 2, . . ., k = 0, 1, . . . , 2j− 1 and w ∈ R j,k,

we have β(cj,j,k, w) < R0.

Without loss of generality, assume Rj,k intersect with D(ai, r) for i =

1, 2, . . . , Nj,k. We have 1 − |cj,j,k| ≈ 1 − |ai|, i = 1, 2, . . . , Nj,k and ∪Nj,k i=1D(ai, s) ⊂ ∪ Nj,k i=1 D(ai, r) ⊂ D(cj,j,k, R0+ 2r). Thus Nj,k≤ |D(cj,j,k, R0+ 2r)|

inf1≤i≤Nj,k|D(ai, s)|

. 1,

which implies the desired result. The proof is complete.  The following lemma is a main result in [10] and plays an important role in the studying of Toeplitz operators on A2

ω.

Lemma 2.2. Let 0 < p < ∞ and ω ∈ ˆD. Then the following assertions hold. (i) Mpp(r, Bωz) ≈ Rr|z| 0 1 ˆ ω(t)p(1−t)pdt, r|z| → 1. (ii) If υ ∈ ˆD, kBω zk p Apυ≈ R|z| 0 ˆ υ(t) ˆ ω(t)p(1−t)pdt, |z| → 1.

Here and hence forth, Mp

p(r, Bωz) = 1 2π R2π 0 |B ω z(reiθ)|pdθ.

For any measurable function f , let Bωf (z) = 1 kBω zk2A2 ω Z D f (w)|Bzω(w)|2ω(w)dA(w)ˆ 1 − |w| . Then we have the following lemma.

Lemma 2.3. Let ω ∈ D and 1 ≤ p < ∞. Then there exists ε > 0 such that Bω: Lpτ → Lpτ is bounded when τ = −2 ± ε.

(5)

Proof. Since ω ∈ D, by Lemmas A and B in [11], there are constants 0 < a < b < ∞ such that ˆ ω(t) (1 − t)b % ∞ and ˆ ω(t) (1 − t)a & 0, when 0 ≤ t < 1. (1) Suppose 0 < ε < a. Then (1 − | · |)−1±εω(·) ∈ R.ˆ

We only prove the case of τ = −2 − ε. The case of τ = −2 + ε can be proved in the same way.

Suppose p = 1. By Lemma 2.2, Bzω(z) = kBzωk2 A2 ω ≈ 1 (1 − |z|)ˆω(z), z ∈ D. (2) For all f ∈ Lp

τ, by Fubini’s Theorem, (2) and Lemma 2.2(ii), we have

kBωf kL1 τ = Z D 1 kBω zk2A2 ω Z D f (w)|Bzω(w)|2 ˆ ω(w)dA(w) 1 − |w| (1 − |z|2)−2−εdA(z) . Z D |f (w)| ω(w)ˆ 1 − |w| Z D |Bω w(z)|2(1 − |z|)−1−εω(z)dA(z)ˆ  dA(w) . Z D |f (w)| ω(w)ˆ 1 − |w| Z |w|+12 0 1 (1 − t)2+εω(t)ˆ dt ! dA(w). Since 0 < ε < a, Z |w|+12 0 1 (1 − t)2+εω(t)ˆ dt . (1 − |w|)a ˆ ω(w) Z |w|+12 0 1 (1 − t)2+a+εdt . (1 − |w|)11+εω(w)ˆ . So, kBωf kpLp τ . kf k p Lpτ when p = 1. Suppose 1 < p < ∞. Let p0= p p−1, h(z) = (1−|z|) swith 0 < s < min{a p0,ap}. Set H(z, w) = |B ω z(w)|2ω(w)ˆ kBω zk2A2 ω(1 − |w|)(1 − |w| 2)−2−ε. Then Bωf (z) = R

Df (w)H(z, w)dAτ(w). On one hand,

Z D H(z, w)h(w)p0dAτ(w) = Z D |Bω z(w)|2ω(w)(1 − |w|)ˆ p 0s−1 kBω zk2A2 ω dA(w) . (1 − |z|)ˆω(z) Z |z|+12 0 1 (1 − t)2−p0s ˆ ω(t)dt . (1 − |z|) 1+aω(z)ˆ ˆ ω(z) Z |z|+12 0 1 (1 − t)2+a−p0sdt . h(z)p0.

(6)

On the other hand, Z D H(z, w)h(z)pdAτ(z) ≈ Z D |Bω z(w)| 2ω(w)(1 − |z|)ˆ −2−ε+ps kBω zk2A2 ω(1 − |w| 2)−1−ε dA(z) ≈ ω(w)ˆ (1 − |w|)−1−ε Z D |Bwω(z)| 2(1 − |z|)−1−ε+psω(z)dA(z)ˆ .(1 − |w|)ω(w)ˆ −1−ε Z |w|+12 0 1 (1 − t)2+ε−psω(t)ˆ dt . h(w)p.

By Schur’s test, see [12, Theorem 3.6] for example, we have that Bω: Lpτ → Lpτ

is bounded when 1 < p < ∞. The proof is complete.  Lemma 2.4. Suppose ω ∈ D, 1 ≤ p ≤ ∞ and 0 ≤ q ≤ ∞. Then Bωis bounded

on Kpq(λ).

Proof. When 1 ≤ p < ∞, choose ε > 0 such that Lemma 2.3 holds. For f ∈ Kp

q(λ), by Lemma 2.3, when τ = −2 ± ε, for j = 0, 1, 2, . . ., we have

kBω(f χj)k p Lp λχk = Z 1− 1 2k≤|z|<1− 1 2k+1 |Bω(f χj)(z)|p dA(z) (1 − |z|2)2 ≈ 2k(τ +2) Z 1−1 2k≤|z|<1− 1 2k+1 |Bω(f χj)(z)|pdAτ(z) . 2k(τ +2) Z D |f (z)χj(z)|pdAτ(z) ≈ 2(τ +2)(k−j)kf χjk p Lpλ.

When j ≤ k, letting τ = −2 − ε, we get kBω(f χj)k p Lp λχk . 2 −ε|j−k|kf χ jk p Lpλ.

When j > k, letting τ = −2 + ε, we obtain kBω(f χj)k p Lp λχk . 2 −ε|j−k|kf χ jk p Lpλ. Therefore, when 1 ≤ p < ∞, k(Bωf )χkkLpλ = Bω   ∞ X j=0 f χj   Lp λχk ≤ ∞ X j=0 kBω(f χj)kLp λχk . ∞ X j=0 kf χjkLpλ 2ε|j−k|p . (3) When p = ∞, k(Bωf )χkkL∞ λ = kBωf kL ∞ λχk ≤   k X j=0 + ∞ X j=k+1  kBω(f χj)kL∞ λχk. (4)

(7)

After a calculation, kBω(f χj)kL∞ λχk ≤ sup 1−1 2k≤|z|<1− 1 2k+1 1 kBω zk2A2 ω Z 1−1 2j≤|w|<1− 1 2j+1 |f (w)||Bω z(w)| 2ω(w)dA(w)ˆ 1 − |w| . kf kL∞ λχj 1 2kω(1 −ˆ 1 2k) Z 1− 1 2j+1 1−1 2j ˆ ω(r)dr 1 − r Z (1− 1 2j+1)(1− 1 2k+1) 0 1 (1 − t)2ω(t)ˆ 2dt ≈ kf kL∞ λχj 1 2kω(1 −ˆ 1 2k+1)ˆω(1 − 1 2j+1) Z xj,k 0 1 (1 − t)2ω(t)ˆ 2dt. (5) Here xj,k= (1 −2j+11 )(1 − 1 2k+1). By (1), Z xj,k 0 1 (1 − t)2ω(t)ˆ 2dt . (1 − xj,k)2a ˆ ω(xj,k)2 Z xj,k 0 1 (1 − t)2+2adt . (1 − xj,k) −1 ˆ ω(xj,k)2 = 1 − (1 − 1 2k+1)(1 − 1 2j+1) −1 ˆ ω((1 −2k+11 )(1 − 1 2j+1)) 2 . (6) Let rj= 2j+11 . Since 1−(1− 1 2j+1− 1 2k+1) 1−(1− 1 2k+1)(1− 1 2j+1) ≈ 1, by (5) and (6) we have kBω(f χj)kL∞ λχk . kf kL ∞ λχj ˆ ω(1 −2k+11 )ˆω(1 − 1 2j+1) (1 + 2k−j) ˆω(1 − 1 2k+1− 1 2j+1) 2 = kf kL∞ λχj ˆ ω(1 − rk)ˆω(1 − rj) (1 + 2k−j) ˆω(1 − r k− rj)2 . Therefore, when j ≥ k, using the monotonicity of ˆω, we have

kBω(f χj)kL∞ λχk . kf kL ∞ λχj ˆ ω(1 − rj) ˆ ω(1 − rk− rj) = kf kL∞ λχj ˆ ω(1−rj) (1−(1−rj))a ˆ ω(1−rk−rj) (1−(1−rk−rj))a ra j (rk+ rj)a . kf kL∞ λχj 2a(j−k) . (7)

When j < k, it is obvious that

kBω(f χj)kL∞ λχk . kf kL∞ λχj 2k−j . (8)

From (4), (7) and (8), we have k(Bωf )χkkL∞ λ ≤ ∞ X j=0 kf χjkL∞ λ 2min{1,a}|j−k|. (9)

(8)

By (3) and (9), there exists ε0> 0 such that k(Bωf )χkkLpλ . ∞ X j=0 kf χjkLpλ 2ε0|j−k| , when 1 ≤ p ≤ ∞.

When 1 ≤ q ≤ ∞, we consider the sequences X = {xk}, Y = {yk}, where

xk = 2−ε0|k|and

yk=



kf χkkLpλ, k ≥ 0,

0, k < 0.

Then k(Bωf )χkkLpλ . X ∗ Y (k). Here, X ∗ Y means the convolution of X and

Y . By Young’s inequality, kBωf kKpq(λ)= k{k(Bωf )χkkLpλ} ∞ k=0klq .    ∞ X j=0 kf χjkLpλ 2ε0|j−k|    ∞ k=0 lq = kX ∗ Y klq . kXkl1kY klq ≈ kf kKp q(λ). When 0 < q < 1, kBωf kqKp q(λ) = ∞ X k=0  k(Bωf )χkkLpλ q . ∞ X k=0   ∞ X j=0 kf χjkLpλ 2ε0|j−k|   q ≤ ∞ X k=0 ∞ X j=0 kf χjkqLp λ 2qε0|j−k| ≤ ∞ X j=0 kf χjkqLp λ ∞ X k=−∞ 2−qε0|k|≈ kf kq Kpq(λ).

If q = 0, for any given M ∈ N, kBωf kKqp(λ) = lim sup k→∞ k(Bωf )χkkLpλ . lim sup k→∞ ∞ X j=0 kf χjkLpλ 2ε0|j−k| = lim sup k→∞   M X j=0 kf χjkLpλ 2ε0|j−k| + ∞ X j=M +1 kf χjkLpλ 2ε0|j−k|  . sup j≥M +1 kf χjkLpλ.

Letting M → ∞, we have kBωf kKqp(λ) . kf kKqp(λ). The proof is complete. 

Proof of Theorem 1.1. (i) By Lemma 2.1, for any z ∈ Λk, there exists N =

N (r) such that D(z, r) ⊂ ∪k+Nj=k−NΛj. Here Λj= ∅ if j < 0. Thus,

crχk)(z) ≤ k+N X j=k−N µ(Λj∩ D(z, r)) (1 − |z|)ˆω(z) = k+N X j=k−N \ (µχj)r(z) and \ (µχj)r(z) = µ(Λj∩ D(z, r)) (1 − |z|)ˆω(z) ≤ µ(D(z, r)) (1 − |z|)ˆω(z) j+N X k=j−N χk(z) = j+N X k=j−N (cµrχk)(z).

(9)

Therefore, by Theorem 3 in [11], kTµkSp,q = k{kTµχkkSp} ∞ k=0klq≈ k{k \(µχk)rkLp λ} ∞ k=0klq ≈ k{kcµrχkkLpλ}∞k=0klq= k c µrkKpq(λ) and kTµkSp,q= k{kTµχkkSp} ∞ k=0klq≈ k{k{ \(µχk)r(aj)}∞j=1klp}∞k=0klq ≈ k{k{(cµrχk)(aj)}j=1∞ klp}∞k=0klq= k{ c µr(aj)}klpq.

(ii) Suppose r > 0 such that Lemma 8 in [11] holds. That is, for all z ∈ D and w ∈ D(z, r), |Bω z(w)| ≈ Bzω(z). By Lemma 11 in [11], hTµBzω, B ω ziA2 ω= hB ω z, B ω ziL2 µ. Using (2), we get c µr(z) = µ(D(z, r)) (1 − |z|)ˆω(z) ≈ 1 Bω z(z) Z D(z,r) |Bω z(w)| 2dµ(w) ≤ fT µ(z). So, kTµkSp,q≈ kcµrkKpq(λ). kfTµkKpq(λ).

On the other hand, since |Bω

z(w)|2 is subharmonic and ω ∈ D, by Fubini’s

theorem, f Tµ(z) = 1 Bω z(z) Z D |Bzω(w)| 2 dµ(w) . Bω1 z(z) Z D Z D(w,r) |Bω z(η)|2 (1 − |η|)2dA(η)dµ(w) = 1 Bω z(z) Z D c µr(η)|Bzω(η)| 2ω(η)dA(η)ˆ 1 − |η| = Bω(µcr)(z). By Lemma 2.4 we have kfTµkKp q(λ) . kBω(cµr)kKpq(λ). kcµrkKpq(λ)≈ kTµkSp,q, when 1 ≤ p ≤ ∞.

Next we prove the case of p < 1. For z ∈ D, f Tµ(z) = 1 Bω z(z) Z D |Bzω(w)| 2dµ(w) ≤ 1 Bω z(z) ∞ X j=1 Z D(aj,r) |Bωz(w)| 2dµ(w) ≤ 1 Bω z(z) ∞ X j=1 µ(D(aj, r)) sup w∈D(aj,r) |Bω z(w)| 2.

Using the subharmonicity of |Bω z|2p, f Tµ(z) p ≤ 1 (Bω z(z))p ∞ X j=1 (µ(D(aj, r)))p sup w∈D(aj,r) |Bω z(w)| 2p .(Bω1 z(z))p ∞ X j=1 (µcr(aj)) p (1 − |aj|)pω(aˆ j)p (1 − |aj|)2 Z D(aj,2r) |Bω z(w)| 2pdA(w).

(10)

By Fubini’s theorem and Lemma 2.2(i), Z Λk Z D(aj,2r) |Bzω(w)| 2p dA(w)dλ(z) ≈ 22k Z D(aj,2r) Z Λk |Bzω(w)| 2pdA(z)dA(w) . 2k Z D(aj,2r) Z (1− 1 2k+1) |w|+1 2 0 dtdA(w) ˆ ω(t)2p(1 − t)2p.

Let υ(z) = (1−|z|)(1−|z|)pω(z)ˆ2 p. Since υ ∈ D, there exist C1, C2> 1 and K > 1, such

that ˆ υ(t) = Z 1+t2 t υ(s)ds + ˆυ(1 + t 2 ) > Z 1+t2 t υ(s)ds + 1 C1 ˆ υ(t) and ˆ υ(t) = Z 1−1−tK t υ(s)ds + ˆυ(1 −1 − t K ) < Z 1−1−tK t υ(s)ds + 1 C2 ˆ υ(t). So, (1 − t)υ(t) ≈ Z 1+t2 t υ(s)ds . ˆυ(t) . Z 1−1−tK t υ(s)ds ≈ (1 − t)υ(t), which implies that υ ∈ R. Therefore,

Z (1−2k+11 )|w|+12 0 1 ˆ ω(t)2p(1 − t)2pdt ≈ Z (1− 1 2k+1) |w|+1 2 0 1 ˆ υ(t)2(1 − t)2dt .  1 ˆ υ((1 −2k+11 ) |w|+1 2 ) 2 1 − (1 −2k+11 ) |w|+1 2 .

Since w ∈ D(aj, r), we get

1 − (1 − 1 2k+1) |aj| + 1 2 ≈ 1 − (1 − 1 2k+1) |w| + 1 2 . Hence, Z Λk Z D(aj,2r) |Bω z(w)| 2pdA(w)dλ(z) . 2 k(1 − |a j|)2  ˆ υ((1 −2k+11 ) |aj|+1 2 ) 2 1 − (1 −2k+11 ) |aj|+1 2 .

(11)

Let ξm=  P aj∈Λm(cµr(aj)) p 1 p . Then Z Λk (fTµ(z))pdλ(z) . 1 2(k+1)pω(1 −ˆ 1 2k+1) p × ∞ X m=0 ξmp 1 2(m+1)pω(1 −ˆ 1 2m+1) p 1 22(m+1) 2k 22(m+1) ˆ υ(1 −2k+11 − 1 2m+1) 2 (2k+11 + 1 2m+1) ≈ ∞ X m=0 ξpmυ(1 −ˆ 1 2m+1)ˆυ(1 − 1 2k+1) ˆ υ(1 −2m+11 − 1 2k+1) 2 1 1 + 2m−k.

Similarly to get (7) and (8), there exists ε > 0 such that Z Λk f Tµ(z) p dλ(z) . ∞ X m=0 ξmp · 1 2ε|k−m|. Note that k{ξm}klq =        ∞ X j=1 ((µcrχm)(aj))p   1 p     ∞ m=0 lq = k{µcr(aj)}klpq ≈ kTµkSp,q. If 0 < p < q = ∞, then kfTµkKp∞(λ)= sup k≥0 Z Λk f Tµ(z) p dλ(z) 1p . k{ξm}kl∞ ≈ kTµkS p,∞.

When 0 < p < q < ∞, let X = {xk} and Y = {yk}, where xk =2ε|k|1 and

yk =  ξpk, k ≥ 0, 0, k < 0. Then, kfTµkKpq(λ)= ∞ X k=0 Z Λk e µ(z)p dλ(z) pq! 1 q .   ∞ X k=0 ∞ X m=0 ξpm· 1 2ε|k−m| !pq  1 q = kX ∗ Y k 1 p l q p ≤  kXkl1kY k l q p 1p . kξmklq ≈ kTµkSp,q. If 0 < q ≤ p < 1, then kfTµkKpq(λ)= ∞ X k=0 Z Λk f Tµ(z) p dλ(z) qp! 1 q

(12)

.   ∞ X k=0 ∞ X m=0 ξpm· 1 2ε|k−m| !qp  1 q . ∞ X k=0 ∞ X m=0 ξqm· 1 2qε|k−m|p !1q . ∞ X m=0 ξmq ∞ X k=−∞ · 1 2qε|k|p !1q . kξmklq ≈ kTµkSp,q.

When 0 = q < p < 1, for any given M ∈ N, lim sup k→∞ Z Λk f Tµ(z) p dλ(z) . lim sup k→∞ M X m=0 + ∞ X m=M +1 ! ξmp · 1 2ε|k−m| ≤ sup m>M ξpm. Letting M → ∞, we obtain lim sup k→∞ Z Λk f Tµ(z) p dλ(z) p1 . lim sup m→∞ ξm. So, kfTµkKp0(λ). kξmkl0 ≈ kTµkSp,q.

The proof is complete. 

References

[1] B. Choe, H. Koo, and K. Na, Positive Toeplitz operators of Schatten-Herz type, Nagoya Math. J. 185 (2007), 31–62. https://doi.org/10.1017/S0027763000025733

[2] E. S. Choi and K. Na, Schatten-Herz type positive Toeplitz operators on pluriharmonic Bergman spaces, J. Math. Anal. Appl. 327 (2007), no. 1, 679–694. https://doi.org/ 10.1016/j.jmaa.2006.04.032

[3] Z. Hu and X. Tang, Schatten(-Herz) class extended Ces`aro operators on Bergman spaces in the unit ball of Cn, Proc. Amer. Math. Soc. 138 (2010), no. 8, 2803–2814. https: //doi.org/10.1090/S0002-9939-10-10365-7

[4] M. Loaiza, M. L´opez-Garc´ıa, and S. P´erez-Esteva, Herz classes and Toeplitz operators in the disk, Integral Equations Operator Theory 53 (2005), no. 2, 287–296. https: //doi.org/10.1007/s00020-004-1320-x

[5] X. F. L¨u and Z. J. Hu, Schatten(-Herz) classes of Toeplitz operators on weighted Bergman spaces, Acta Math. Sinica (Chin. Ser.) 53 (2010), no. 4, 699–716.

[6] , Schatten-Herz class Toeplitz operators on harmonic Bergman spaces of smooth domains in Rn, Math. Nachr. 286 (2013), no. 2-3, 248–259. https://doi.org/10.1002/ mana.201100062

[7] J. Pel´aez, Small weighted Bergman spaces, in Proceedings of the Summer School in Complex and Harmonic Analysis, and Related Topics, 29–98, Publ. Univ. East. Finl. Rep. Stud. For. Nat. Sci., 22, Univ. East. Finl., Fac. Sci. For., Joensuu, 2016.

[8] J. Pel´aez and J. R¨atty¨a, Weighted Bergman spaces induced by rapidly increasing weights, Mem. Amer. Math. Soc. 227 (2014), no. 1066, vi+124 pp.

[9] , Trace class criteria for Toeplitz and composition operators on small Bergman spaces, Adv. Math. 293 (2016), 606–643. https://doi.org/10.1016/j.aim.2016.02. 017

(13)

[10] , Two weight inequality for Bergman projection, J. Math. Pures Appl. (9) 105 (2016), no. 1, 102–130. https://doi.org/10.1016/j.matpur.2015.10.001

[11] J. Pel´aez, J. R¨atty¨a, and K. Sierra, Berezin transform and Toeplitz operators on Bergman spaces induced by regular weights, J. Geom. Anal. 28 (2018), no. 1, 656–687. https://doi.org/10.1007/s12220-017-9837-9

[12] K. Zhu, Operator theory in function spaces, second edition, Mathematical Surveys and Monographs, 138, American Mathematical Society, Providence, RI, 2007. https://doi. org/10.1090/surv/138

Juntao Du

Department of Mathematics Shantou University

Shantou, Guangdong 515063, P. R. China Email address: jtdu007@163.com

Songxiao Li

Institute of Fundamental and Frontier Sciences

University of Electronic Science and Technology of China 610054, Chengdu, Sichuan, P. R. China

참조

관련 문서

Therefore, in this paper, the solar array of HST is modeled as a simple model with beams and membranes, and the phenomenon of thermal induced vibration is verified and

Therefore, if small cafés and effective spaces in the town can be re-created as cultural spaces of the village by adding humanistic values in accordance

Effect of LRP6 on survivin expression in hypoxic cardiomyocytes (A) Expression of survivin in Ad-LRP6 and silencing LRP6 infected cardiomyocytes as determined by western

V notched failure induced by high in situ stress, ~400 m deep, Winnipeg, V notched failure induced by high in situ stress, 400 m deep, Winnipeg, Canada

This paper has significant as a study of case marker reflecting the colloquialism in Yanbian region in China which neglected by the studies on relying on

In this thesis, a study on the appendages for the reduction of ice induced resistance in ice breaking ship has been carried out and G/T 6950ton class ice breaking

GTPγS-induced TRPC4β current depending on intracellular AMI infusion I-V curve (left) showed TRPC4β current... GTPγS-induced TRPC4β current depending on

Excess charge induced by the transfer of electrons are compensated by the presence of ions of opposite sign..