• 검색 결과가 없습니다.

기후변화 대응을 위한 농림수산식품산업 전략수립 연구

N/A
N/A
Protected

Academic year: 2021

Share "기후변화 대응을 위한 농림수산식품산업 전략수립 연구"

Copied!
303
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)C2011-32 | 2011. 11. 기후변화 대응을 위한 농림수산식품산업 전략수립 연구. 김 정 김 김 문. 창 학 윤 태 동. 길 균 형 훈 현. 선임연구위원 부연구위원 부연구위원 위촉연구원 위촉연구원.

(2) 연구 담당 김창길 정학균 김윤형 김태훈 문동현. 선임연구위원 부 연 구 위 원 부 연 구 위 원 위 촉 연 구 원 위 촉 연 구 원. 연구 총괄, 기후변화 대응전략 온실가스 감축잠재력 분석 농림수산식품산업 정책진단 기후변화의 부문별 영향 정리 주요국 대응사례 정리.

(3) i. 머 리 말. 지구가 온난화됨에 따라 우리나라의 농업, 산림, 수산의 경우 생산량이 감소 하고, 수자원의 경우 증발산량이 변하며, 식품·유통의 경우 각종 세균번식을 유 도하여 식품 안전에 큰 위협이 되는 등 부정적인 영향이 심화되고 있다. 세계 는 국제협약을 통해 온실가스 의무감축을 현실화하고 있으며, 우리나라도 2020년 온실가스 배출 전망치 대비 30% 감축을 목표로 설정한 바 있다. 농림 수산식품부문도 정부의 이러한 국가온실가스 감축정책에 적극적으로 대응하 고, 전 영역에 걸쳐 기후변화에 따른 위험을 최소화하는 동시에 기회를 최대화 할 수 있는 체계적이고 실효성 있는 대응방안 마련이 매우 시급하다. 이 보고서는 「기후변화 대응을 위한 농림수산식품산업 전략수립 연구」에 관 한 정책과제의 최종결과물이다. 기후변화가 농림수산식품산업에 미치는 영향 을 체제적으로 분석하였고, 국가온실가스 중기감축목표에 대응하기 위해 농림 수산식품산업의 온실가스 감축잠재력을 분석하였다. 한계감축비용 분석, 주요 국 기후변화 대응사례 분석, AHP 우선순위 분석 등을 바탕으로 체계적인 기후 변화 대응전략을 제시하였다. 특히 기후변화 완화를 위해 배출권거래제 도입, 저탄소직불제 프로그램 도입 등 경제적 수단의 활용, 규제적 수단의 활용, 연구 및 기술개발, 기술보급 및 교육 등의 핵심과제가 필요하고, 기후변화 적응을 위 해 적응기술개발, 기반시설관리 강화, 경제적 인센티브 활용 등의 핵심과제가 필요함을 제시하였다. 아무쪼록 이 연구의 결과가 우리나라 농림수산식품부문 기후변화 대응전략 수립을 위한 기초자료로 활용되기를 기대한다. 온실가스 감축 잠재량 분석에 자문을 아끼지 않은 농촌진흥청의 박규현 연 구사, 정현철 연구사, 그리고 연구자문으로 기여해 준 동국대학교 윤성이 교수 께 감사드린다. 2011. 11. 한국농촌경제연구원장 이 동 필.

(4)

(5) iii. 요. 약. ◦ 이 연구는 국가 온실가스 감축정책에 대응하여 합리적인 감축목표 계획을 도출하고 감축목표를 달성하기 위한 실효성 있는 정책프로그램을 제시하며, 기후변화가 농림수산식품산업에 미치는 영향분석과 정책진단을 통해 부문 별 적절한 대응방안을 제시하기 위해 수행되었다. ◦ 농림수산부문의 에너지사용량 및 온실가스 배출특성을 분석한 결과 가온시 설면적의 90% 이상에서 유류를 이용하여 가온을 하고 있어 유류 의존도가 매우 높은 것으로 나타났다. 경종부문에서 온실가스 배출량은 벼 재배에 의 한 메탄 배출량과 화학비료나 축산분뇨의 농경지 투입에 의한 아산화질소 배출량이 대부분을 차지한다. 통계상 우리나라 경종부문 온실가스 배출량 감소추세는 벼 재배면적 감소에 기인하며, 실질적인 온실가스 감축기술 적 용에 의한 것은 아닌 것으로 나타났다. ◦ 농림수산식품부문은 대부분의 영역에서 기후변화에 매우 취약한 것으로 보 인다. 농업, 산림, 수산의 경우 생산량이 감소하고, 생산 적지가 변동하며, 병해충 발생 빈도가 증가하는 등 부정적인 영향이 심화되고 있다. 수자원의 경우 한반도의 기온이 1℃ 상승함에 따라 실제 증발산량이 3.4%∼5.3% 변 하고, 홍수 규모와 빈도가 증가할 것으로 전망되고 있다. 또, 식품·유통의 경우 각종 세균번식을 유도하여 식품 안전에 큰 위협이 되고, 농산물의 수 급불안을 야기할 것으로 보인다. ◦ 농림수산식품산업분야 온실가스 감축잠재력을 분석한 결과, 농림어업분야 의 경우 2020년 기준 2,611~3,626천톤(BAU 대비 9.0~12.5% 수준)으로, 식 품분야의 경우 308천톤(BAU 대비 5.0% 수준)으로 산정되었다. 농림어업분.

(6) iv 야 부문별 감축잠재량 추정결과 2020년 기준 농업 1,967~3,626천톤, 축산 617~1,071천톤, 수산 26~34천톤, 수자원 0.6~1.7천톤 등으로 나타났다. ◦ 온실가스 감축기술들을 대상으로 온실가스 한 단위 감축에 추가적으로 들어 가는 비용으로 정의되는 한계감축비용을 분석한 결과 지열히트펌프가 가장 비용효과적인 기술로 나타났고, 다겹보온커튼, 잎들깨 LED 적용, 녹비작물 재배, 바이오가스플랜트 등의 순으로 나타났다. 한계감축비용분석을 통한 비용효과적 대책의 정책적 우선순위 결정은 예산제약 하에서 농림수산식품 산업분야 온실가스 감축목표를 효과적으로 달성할 수 있음을 시사한다. ◦ 주요국의 기후변화 대응책을 살펴본 결과 대체적으로 유사하나 국가별 특성 에 따른 전략들도 있는 것으로 나타났다. 미국의 경우 농지를 휴경지와 경작 지로 구분하여 온실가스 완화프로그램을 실시하고 있으며, 특히 자발적 탄 소시장인 시카고 기후거래소 등을 통하여 농업부문 온실가스 감축에 대하여 오프셋 크레딧을 제공하고 있다. 일본은 ‘CO2 표시하기’를 통하여 저탄소제 품의 소비를 촉진하고 있으며, 2011년부터 환경보전 효과가 높은 영농활동 에 대한 메뉴방식의 저탄소 직접지불제도(환경보전형농업 직접지원 교부금) 를 추진하고 있다. ◦ 영국의 기후변화 대응전략을 살펴보면, 질소 민감지역 농업프로그램을 통해 간접적인 온실가스를 저감하는 방안을 추진하고 있으며 독일의 경우 농업투 자지원 프로그램을 통하여 온실가스 감축에 대한 투자를 확대하고 있는데, 바이오가스시스템과 유기퇴비 저장에 많은 투자가 이루어지고 있다. 덴마크 의 경우 지속가능한 농업·수생환경 행동계획을 단계적으로 추진하고 있으 며, 스위스의 경우 생태적 표준과 직불제를 연계하여 생태적 표준을 준수하 는 농가에 직불금을 지급하고 있다. ◦ 네덜란드의 기후변화 대응전략을 살펴보면, 온실원예정책을 통하여 에너지.

(7) v 효율성을 크게 향상시키는 것을 목표로 하고 있으며, 가축사육규모를 제한 하여 CH4 배출량을 줄이고, 기후완충지대를 설치하여 기후변화로 인한 피해 를 줄이는데 역점을 두고 있다. 호주의 경우 탄소오염저감계획(CPRS) 하에 서 탄소상쇄 크레딧과 자발적 탄소상쇄 크레딧을 제공하고 있으며, 농업시 스템의 복원력 배양 및 지역사회 역량구축에 중점을 두고 있다. ◦ 기후변화 완화전략 추진을 위한 핵심과제로는 배출권거래제 도입, 저탄소직 불제 프로그램 도입 등 경제적 수단의 활용, 규제적 수단의 활용, 연구 및 기술개발, 기술보급 및 교육, 온실가스 흡수원 활용 등이 필요한 것으로 나 타났다. 기후변화 적응전략 추진을 위한 핵심과제로는 적응기술개발, 기반 시설관리 강화, 경제적 인센티브 활용, 인력양성 및 교육 강화, 모니터링 시 스템 구축, 농가적용 기술·경영 활용 등이 필요한 것으로 나타났다. ◦ 기후변화에 따른 농업부문 영향분석과 대응전략에 관한 체계적인 연구를 위 해서는 농학·생태학·농공학·수문학·기상학·농업경제학 등 학제간의 공동연 구가 중요하다. 보다 신뢰성 있는 기후변화 영향분석이 이루어지기 위해서 는 기후변화 시나리오별 예측결과와 농업적 특성을 연계한 시뮬레이션 분석 과 사회경제적 요인을 연계한 경제적 분석 등 통합적 모형개발이 지속적으 로 이루어져야 한다..

(8)

(9) vii ABSTRACT. Strategies for Agriculture, Food, Forestry and Fishery Industries against Climate Change. This study aims to establish schemes for rationally reducing greenhouse gas to comply with the national policy for greenhouse gas abatement, to present effective policy programs for attaining the abatement target, and to present appropriate solutions for each sectors through analysis of the impact of climate change on the agro-fishery food industry and policy analysis. This report consists of eight chapters. Chapter 1 describes the necessity and purpose of this study, a review of prior studies, and the method and scope of this study. Chapter 2 describes an analysis of current situation and related policies for the agro-fishery and food industry in connection with climate change. Chapter 3 describes approaches to coping with climate changes, the impact of climate change, approaches to adapting to climate change, approaches to mitigating greenhouse gas, etc. Chapter 4 describes the impact of climate change on agriculture, forestry, fishery, water resources, food and distribution. Chapter 5 describes the current system for managing the greenhouse gas abatement target, estimation of greenhouse gas abatement, and analysis of marginal abatement costs, in the agro-fishery food industry. Chapter 6 describes cases of actions in the agriculture sector of major countries including the US, Japan, the UK, Germany, Denmark, Switzerland and Australia, against climate change. Chapter 7 describes comprehensive strategies to cope with climate change, e.g., the approaches to establishing strategies, mitigation strategies and adaptation strategies, strategies against climate change, overhaul of regulations and systems. Lastly, Chapter 8 provides a summary and concluding remarks. The analysis of the volume of used energy and the characteristics of emitted greenhouse gas in the agro-fishery sector showed that oil has been used for heating in more than 90% of horticultural facility area, which implies a high dependence on oil for heating. Most of emitted greenhouse gases from the tilling sector are attributed to the emission of methane by cultivating rice and nitrous oxide by inputting chemical fertilizers or livestock excretions into agricultural land. According to statistics, these is a trend of reduced.

(10) viii greenhouse gas in the tilling sector of Korea as a result of reduced area for rice cultivation, and is not led by substantial application of technology for abating greenhouse gas. It is considered that most of the agro-fishery food sector is vulnerable to climate change. In agriculture, forestry and fishery, more and more negative impacts have been observed in relation to climate change, e.g., reductions in production volume, changing patterns optimum land for production, increased occurrence of diseases and harmful pests, etc. With respect to the water resources, as the temperature in the Korean peninsula increases by 1℃, the actual volume of evaporation has changed by 3.4%∼ 5.3%, and it is predicted that the scale and the frequency of floods will increase. Also, in terms of food and distribution, bacterial pests will multiply to significantly threaten food safety, and to result in unstable demand and supply of agricultural products. The analysis of potential greenhouse gas abatement in the agro-fishery food industry is estimated from 2,611,000~3,626,000 tons (compared to BAU, 9.0~12.5%) in the agriculture, forestry and fishery industry, and 308,000 tons (compared to BAU, 5.0%) in the food industry, by 2020. Estimation of the volume of potential abatement in each sector of the agriculture, forestry and fishery industry showed 1,967,000~3,626,000 tons in agriculture, 617,000~1,071,000 tons in livestock farming, 26,000~34,000 tons in fishery, and 600~1,700 tons in water resources, by 2020. With respect to greenhouse gas abatement technologies, analysis of the marginal abatement costs, which is defined as an additional cost for unit abatement of greenhouse gas, showed that geothermal heat pumps were the most cost-effective technology, followed by multi-ply thermal insulation curtains, application of LED to perilla, cultivation of green manure crops, and biogas plants for reduction of greenhouse gases. This implies that decision of policy priority for the cost effective solutions through analysis of marginal abatement costs can contribute to achieving the target of greenhouse gas abatement in the agro-fishery food industry with the limited budgets. Review of the solutions by major countries against climate change showed similarities, but some strategy were shown to be unique to characteristics of each country. For instance, the US has divided agricultural land into unused land and cultivated land to apply a program for mitigating greenhouse gas, and provides offset credits for abating greenhouse gas in agriculture through the Chicago Climate Exchange, which is the voluntary.

(11) ix carbon market. Japan encourages the consumption of low-carbon products through ‘CO2 labelling’ and also has employed the Low Carbon Direct Payment System of menu type (direct support grant for environment conserving farming) for farming of high environment conservation since 2011. The UK’s program against climate change includes a scheme for indirectly reducing greenhouse gas through the agricultural programs in nitrogensensitive regions. Germany has increasingly in greenhouse gas abatement through the programs for supporting investment in agriculture, and great investment has been made in the biogas system and storage of organic compost. Denmark has promoted the schemes for sustainable agriculture and actions for the aquatic environment step by step. Switzerland has connected an ecological standard to the direct payment system to grant the direct payment to farmers who complied with the ecological standard. Climate change initiatives in the Netherlands aim at significantly improving energy efficiency through the greenhouse horticulture policy, and focus on limiting the scale of livestock farming to reduce emitted CH4 and on installing climate buffer zones to reduce damages due to climate change. Australia provides carbon offset credits and voluntary carbon offset credits according to the Carbon Pollution Reduction Scheme (CPRS), and focuses on improving the recovering capability of the agricultural system and establishment of the capability of local communities. Required key projects for promoting the strategy for mitigating climate change include use of economic measures, e.g., introduction of emission trading and introduction of the low carbon direct payment programs, use of regulation measures, research and technology development, dissemination of technology and training, use of greenhouse gas absorption sources. Required key projects for promoting strategies for adaptation to climate change include development of adaptation technology, enhancement of infrastructure management, use of economic incentives, enhancement of human power training, establishment of monitoring systems, use of application and management of technology to farmers, etc. Interdisciplinary studies among agriculture, ecology, agricultural engineering, hydrology, meteorology, agricultural economics, etc., are very important for the systematic analysis of the impact of climate change on agriculture and developing strategies to cope with climate change. For more reliable analysis of the impact of climate change, it is necessary to continue integrated model development, e.g., analysis of simulations to connect the.

(12) x prediction result for each climate change scenario to specific agricultural characteristics, and economic analysis to draw connections to socio-economic factors.. Researchers: Chang-Gil Kim, Hak-Kyun Jeong, Yoon-Hyung Kim, Tae-Hoon Kim and Dong-Hyun Moon Research period: 2011. 6. - 2011. 11. E-mail address: changgil@krei.re.kr.

(13) xi. 차. 례. 제1장 서론 1. 연구 배경 및 목적 ······················································································· 1 2. 선행연구 검토 ······························································································· 3 3. 연구방법과 범위 ··························································································· 8 제2장 농림수산식품산업 여건변화 및 정책 진단 1. 농림수산·식품분야 여건변화 진단 ··························································· 12 2. 기상변화와 농업부문의 수급불안정 진단 ·············································· 15 3. 농림수산부문의 에너지사용량 및 온실가스 배출특성 분석 ·················· 18 4. 기후변화 대응 농림수산식품분야 정책에 대한 평가 ····························· 24 제3장 농림수산식품부문의 기후변화 대응 방식 1. 기후변화 대응의 접근방식 ········································································ 35 2. 기후변화의 파급 영향 ·············································································· 38 3. 기후변화 적응의 접근방법 ········································································ 40 4. 온실가스 완화의 접근방법 ········································································ 41 제4장 기후변화에 따른 농림수산식품산업의 부문별 영향 1. 농림수산식품산업에 미치는 부문별 영향 ················································ 46 2. 기후변화가 농업부문에 미치는 경제적 영향 ·········································· 84 제5장 농림수산식품산업 분야 온실가스 감축잠재력 분석 1. 농림수산식품산업분야의 온실가스 감축목표 ·········································· 89 2. 농림수산식품부문의 온실가스 감축잠재량 추정 ···································· 94.

(14) xii 3. 한계감축비용분석 ····················································································· 114 제6장 국제기구 및 주요국의 기후변화 대응 사례 1. 국제기구의 농업부문 기후변화 대응 동향 ············································ 118 2. 주요국의 농업부문 기후변화 대응책 ····················································· 135 제7장 농림수산식품부문의 기후변화 대응 전략 1. 전략수립의 접근방법 ················································································ 212 2. 기후변화 완화 전략 ·················································································· 216 3. 기후변화 적응 전략 ·················································································· 246 4. 기후변화 대응을 위한 법과 제도적 정비 ·············································· 264 제8장 요약 및 결론 ······················································································ 269 부록 ···················································································································· 272 참고문헌 ············································································································ 275.

(15) xiii. 표 차 례. 제2장 표 2- 1. 농림어업부문의 생산구조 변화추이 ············································ 13 표 2- 2. 식품산업의 시장규모 변화추이 ···················································· 14 표 2- 3. 월평균 호우 발생일수(1981~2010년) ········································· 16 표 2- 4. 시설채소 가온방법별 온실현황 ···················································· 18 표 2- 5. 어업용 면세유 공급실적 ······························································· 18 표 2- 6. 화학비료 소비량 ············································································ 19 표 2- 7. 우리나라 농업부문 온실가스 배출량(2009) 평가 결과 ············· 21 표 2- 8. 우리나라 농업부문 온실가스 배출현황(2009) ···························· 21 표 2- 9. 제조업·건설업과 농업의 탄소생산성 변화 추이 (GDP 2005년 기준) ······································································· 23 표 2-10. 제3차 종합대책 관련 농림부문의 사업 내용 및 실적 ·············· 25 표 2-11. 제4차 종합대책 관련 농림부문의 사업 내용 및 실적 ·············· 27 표 2-12. 농업무문의 녹색성장 추진정책의 주요 내용 ··························· 29 표 2-13. 농림수산식품분야 기후변화 대응 기본계획(2011~2020) 사업내용 ························································································· 33 제3장 표 3-1. 농업분야의 적용 가능한 적응 인벤토리 ····································· 40 표 3-2. 온실가스 감축수단의 분류 ····························································· 42 표 3-3. 농업부문의 온실가스 저감기술 목록 ············································ 45 제4장 표 4- 1. 품목별 온난화에 따른 향후 주산지 예측 ··································· 51.

(16) xiv 표 4- 2. 등숙온도 상승에 따른 쌀 품질 저하 ········································ 52 표 4- 3. 2002∼2003년과 2006∼2007년의 미곡 단수 정체 요인별 기여도 ····························································································· 53 표 4- 4. CERES-Rice모형을 이용한 중장기 쌀 생산 예측 ····················· 53 표 4- 5. 벼에 발생하는 주요 병 ································································· 59 표 4- 6. 벼에 발생하는 주요 해충 ····························································· 59 표 4- 7. 기후변화에 의한 매개체의 영향 ·················································· 80 표 4- 8. 기후변화로 인한 식품가공과정별 잠재적 오염원 ······················ 80 표 4- 9. 기후변화에 따른 농업부문 총소득의 변화 ································· 87 표 4-10. 기후변화에 따른 품목별 생산량변화율 ······································· 88 제5장 표 5- 1. 농업분야 온실가스 배출량 산정 항목 분류 ······························· 90 표 5- 2. 농림어업, 식품분야 BAU 전망 ···················································· 91 표 5- 3. 분야별 관리업체 수 ······································································· 92 표 5- 4. 관리업체 지정기준(온실가스 에너지 목표관리제 시행령 제29조 제1항) ················································································ 92 표 5- 5. 농림어업, 식품분야 감축목표 ······················································· 93 표 5- 6. 온실가스 감축기술 목록 ····························································· 96 표 5- 7. 벼논 간단관개 면적 비율 ····························································· 97 표 5- 8. 청보리 생산전망치 ······································································· 100 표 5- 9. 퇴액비와 시설개선 시나리오 ······················································ 101 표 5-10. 바이오가스 생산시설 설치 계획 시나리오 ······························· 102 표 5-11. 농림어업분야 감축잠재량 추정 ·················································· 110 표 5-12. 농림어업분야 부문별 감축잠재량 추정 ····································· 111 표 5-13. 식품분야 감축잠재량 추정 ························································· 112 표 5-14. 녹색기술의 한계감축비용 도출 ·················································· 117.

(17) xv 제6장 표 6- 1. 시점과 책임주체별 적응 옵션의 예시 ······································· 119 표 6- 2. 기후변화 영향평가를 위해 농업관련 지표의 제안된 구조 ····· 121 표 6- 3. 농가수준과 사회전체 수준 적응전략 ········································ 122 표 6- 4. 작물재배에서의 온실가스 감축 조치 ······································· 123 표 6- 5. 미국의 부문별 온실가스 배출량과 탄소저장의 최근 경향 ····· 136 표 6- 6. CRP 프로그램 등록을 통한 탄소저감 효과 ····························· 141 표 6- 7. 2011 CSP 연간 직불금 지급액 ·················································· 143 표 6- 8. 미국의 전력사용과 관련된 경제부문별 온실가스 배출량의 최근 경향 ······················································································ 146 표 6- 9. 농림분야 크레딧의 지역별 분포 ················································ 152 표 6-10. 농림 분야 크레딧의 형태별 분포 ·············································· 153 표 6-11. 일본의 농업부문 기후변화 대응 정책사업(2011년) ················· 158 표 6-12. 일본 농림수산성의 부문별 온실가스 감축량 추정 ·················· 159 표 6-13. 메루헨로즈사의 배출량 저감 계획 ············································ 162 표 6-14. 농업부문의 온실가스 배출량(UNFCCC 범위) ························· 165 표 6-15. 영국의 배출원별 온실가스 배출량 ············································ 165 표 6-16. 1990년 이후 독일의 온실가스 배출량의 경향 ························· 174 표 6-17. 1990년 이후 독일의 온실가스 배출량의 경향 ························· 180 표 6-18. 2007년 스위스의 부문별 온실가스 배출량 ······························ 187 표 6-19. 2006-2007년 호주의 부문별 온실가스 배출량 ························· 197 표 6-20. 2006-2007년 호주의 부문별 매탄 배출량 ································ 198 표 6-21. 2006-2007년 호주의 부문별 아산화질소 배출량 ····················· 198 표 6-22. 주요국의 기후변화 대응책 사례분석 시사점 ························· 207 표 6-23. 주요국의 농업부문 기후변화 대응책(미국, 일본) ···················· 208 표 6-24. 주요국의 농업부문 기후변화 대응책(영국, 독일) ···················· 209 표 6-25. 주요국의 농업부문 기후변화 대응책(덴마크, 스위스) ············ 210 표 6-26. 주요국의 농업부문 기후변화 대응책(네덜란드, 호주) ············ 211.

(18) xvi 제7장 표 7- 1. 농림수산식품부문 기후변화 완화대책 추진 로드맵 ················ 216 표 7- 2. 온실 가스 배출권 거래제에 관한 법률안의 주요 내용 ·········· 217 표 7- 3. 메뉴 방식의 저탄소직불제 프로그램(안) ·································· 222 표 7- 4. 시설하우스 농작물에 대한 재해보험 사업시행지침 ················ 233 표 7- 5. 농림수산식품부문 기후변화 적응대책 추진 로드맵 ················ 246 표 7- 6. 분야별·단계별 기후변화 적응 연구개발 로드맵 ······················ 248 표 7- 7. 권역별 기후변화 적응 기술개발 추진과제 ······························· 250 표 7- 8. 주요 품목별 기후변화 적응대책 ················································ 258 부록 부표 1. 농업부문 온실가스 완화옵션 인벤토리 ······································ 272 부표 2. 농업부문 기후변화 적응옵션 인벤토리 ···································· 273.

(19) xvii. 그 림 차 례. 제1장 그림 1- 1. 연구의 흐름도 ············································································ 11 제2장 그림 2- 1. 농림어업부문의 생산구조 ·························································· 13 그림 2- 2. 식품산업의 시장규모 ································································· 14 그림 2- 3. 12시간 누적강수량 80mm이상 집중호우 발생빈도 ··············· 15 그림 2- 4. 12시간 누적강수량 150mm이상 집중호우 발생빈도 ············· 16 그림 2- 5. 월평균 호우 발생일수의 퍼센티지 비율(1981~2010년) ······· 17 그림 2- 6. 기상변화에 따른 국제곡물가격 변동 실태 ····························· 17 그림 2- 7. 농업부문 온실가스 배출량 추이 ·············································· 20 그림 2- 8. 제조업 및 건설업의 탄소생산성 변화율 추이(2000년 기준) ··· 23 그림 2- 9. 농업부문의 탄소생산성 변화율 추이(2000년 기준) ··············· 23 제3장 그림 3- 1. 기후변화 대응의 접근방식 체계 ·············································· 36 그림 3- 2. 기후변화가 농업부문에 미치는 파급영향 구조 ······················ 38 그림 3- 3. 온난화가 농업부문에 미치는 잠재적 영향 ····························· 39 그림 3- 4. 온실가스 감축방법 구분 ··························································· 41 그림 3- 5. 농림수산식품부문의 온실가스 배출-흡수 구조 ······················ 43 제4장 그림 4- 1. 연대별 사과 재배지역의 지역별 변동 현황 ··························· 47 그림 4- 2. ‘후지’의 생육기 평균기온 상승 정도별 재배적지 변동 예측 ··· 47.

(20) xviii 그림 4- 3. 연대별 복숭아 재배지역의 지역별 변동 현황 ························ 48 그림 4- 4. 한라봉 재배지역 변화 ······························································· 49 그림 4- 5. 기온상승시 스트로베리 구아바 재배가능지역 변동 예측도 ··· 50 그림 4- 6. 참다래 재배면적 변화 ······························································· 50 그림 4- 7. 기후변화 전망에 따른 벼 생산성 변화 예측 ························· 54 그림 4- 8. 가을보리 재배지대 변화 ························································· 55 그림 4- 9. 전북지역 벼 병해충 피해면적 추이 ········································ 58 그림 4-10. 우리나라 산불 발생면적과 산사태 발생면적 변화 ················ 63 그림 4-11. 연강수량과 산사태 발생면적과의 관계 ··································· 64 그림 4-12. 빠른 기후변화시나리오(A2)에 따른 소나무림의 적정 생육분포 범위 변화 ··································································· 67 그림 4-13. 우리나라 온대중부산림에 대한 기온상승 시뮬레이션 ·········· 68 그림 4-14. 국립수산과학원 해양관측자료를 통한 최근 41년간 표층수온 상승 경향(상)과 일본 기상청 제공 전 세계 평균 표층수온 상승 경향(하) ············································································· 70 그림 4-15. IPCC AR4 사용 모델을 활용한 2000년 표층수온(좌상), 2000년 대비 2030년 표층수온 변동(우상), 2050년 표층수온 변동(좌하) 및 2100년 표층수온 변동(우하) 경향 ·················· 71 그림 4-16. 고등어 어장 변화 ······································································· 74 그림 4-17. 농업기후지대별 연강수량 변화 ················································ 76 그림 4-18. 기후변화에 따른 농업부문 연간 손실액의 변화 추이 ·········· 88 제5장 그림 5- 1. 농림어업분야 부문별 감축잠재량 추정(시나리오 2 기준) ·· 112 그림 5- 2. 농림어업분야 기술별 감축잠재량 추정(시나리오 2 기준) ·· 113 그림 5- 3. 대안별 한계감축비용 비교: 농업부문 사례 ·························· 115 그림 5- 4. 농업부문 녹색기술의 한계감축비용 비교 ····························· 117.

참조

관련 문서

아무쪼록 이 연구가 농업부문의 기후변화 적응 주류화를 효과적으로 수행하는 데에 유용하게 활용되기를 기대한다.. 하지만 이러한 적응에 대한 낮은 정책 우선순위가

기후변화 대응 병아리콩 연구(Feed the Future Innovation Lab for Climate-Resilient Chickpea) 기후변화 대응 기장 연구(Feed the Future Innovation Lab for

이에 따라 본 연구에 서는 유럽의 농업부문 기후변화 적응 정책에 대해 분석하고 이를 바탕으로 국내 농업부문의 효과적인 기후변화 적응을 위한 시사점을 제공하고자

- 충북은 신성장산업·농업인구 비율이 높아 기상기후의 영향을 크게 받는 업종의 생산 증대를 위한 맞춤형 기상융합 서비스 지원 - 신기후체제에 따른

 바이든 대통령의 원전 정책 구상은 과거 오바마 행정부 때 부통령으로서 자국의 에너지안보와 기후변화 대응을 위해 모든 에너지원과 기술이

기후변화 대응을 실천하고 홍보하기 위한 일을 알아보아요 ...

세계 제조업의 중심이 중국으로 이전되고 있고, 서부 대 개발 사업에 따라 창지앙 (長江) 내륙지역의 개발이 본격화 할 경우에 상하이항의 물동량이 더 증가할 것은

이러 한 위기에 대처하기 위해 UN 기후정상회의, IPCC에서는 전 세계적으로 기후변화 대 응 방안 논의 확산과 생존을 위한 지구인의 인식 전환이 필요함을 알리며