• 검색 결과가 없습니다.

750 GeV diphoton resonance and electric dipole moments

N/A
N/A
Protected

Academic year: 2021

Share "750 GeV diphoton resonance and electric dipole moments"

Copied!
8
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

750 GeV

diphoton

resonance

and

electric

dipole

moments

Kiwoon Choi

a

,

Sang

Hui Im

a

,

Hyungjin Kim

a

,

b

,

,

Doh

Young Mo

a aCenterforTheoreticalPhysicsoftheUniverse,InstituteforBasicScience(IBS),Daejeon34051,RepublicofKorea bDepartmentofPhysics,KAIST,Daejeon34141,RepublicofKorea

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received20June2016

Receivedinrevisedform20July2016 Accepted21July2016

Availableonline26July2016 Editor:J.Hisano

We examine theimplicationoftherecentlyobserved 750 GeVdiphotonexcessfortheelectricdipole moments ofthe neutronand electron.Iftheexcessisduetoaspinzeroresonancewhichcouplesto photons and gluonsthrough the loopsofmassive vector-likefermions, the resultingneutron electric dipole moment can becomparable to thepresent experimental boundif theCP-violating angle

α

in the underlyingnewphysicsisofO(10−1).AnelectronEDMcomparabletothe presentboundcanbe achieved throughamixing betweenthe 750 GeVresonance and the Standard Model Higgsboson, if themixingangleitselfforanapproximatelypseudoscalarresonance,orthemixingangletimesthe CP-violatingangle

α

foranapproximatelyscalarresonance,isofO(10−3).Forthecasethatthe750 GeV resonancecorrespondstoacompositepseudo-Nambu–GoldstonebosonformedbyaQCD-likehypercolor dynamicsconfiningatHC,theresultingneutronEDMcanbeestimatedwith

α

∼ (750 GeV/HC)2θHC, whereθHCisthehypercolorvacuumangle.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

RecentlytheATLASandCMScollaborationsreportedanexcess ofdiphotoneventsattheinvariantmassmγ γ



750 GeV withthe local significance 3.6

σ

and 2.6

σ

, respectively [1,2]. The anal-ysis was updated later, yielding an increased local significance, 3.9

σ

and3.4

σ

,respectively

[3,4]

.Ifthesignal persists,thiswill be an unforeseen discovery of new physics beyondthe Standard Model (SM). So one can ask now what would be the possible phenomenologyotherthanthediphotonexcess,whichmayresult fromthenewphysicstoexplainthe750 GeVdiphotonexcess.

With the presently available data,one simple scenario to ex-plain the diphoton excess is a SM-singlet spin zero resonance S which couples to massive vector-like fermions carryingnon-zero SM gauge charges[5–8]. Inthisscenario, the750 GeV resonance interacts with the SM sector dominantly through the SM gauge fieldsandpossibly alsothroughthe Higgsboson. Insuch case, if thenewphysicssectorinvolvesaCP-violatinginteraction,the elec-tricdipolemoment(EDM)oftheneutronorelectronmayprovide themostsensitiveprobeofnewphysicsinthelowenergylimit.

*

Correspondingauthor.

E-mailaddresses:kchoi@ibs.re.kr(K. Choi),shim@ibs.re.kr(S.H. Im), hjkim06@kaist.ac.kr(H. Kim),modohyoung@ibs.re.kr(D.Y. Mo).

More explicitly, after integrating out the massive vector-like fermions,theeffectivelagrangianmayinclude

κ

s 2S F aμνFa μν

+

κ

p 2 S F aμνF

˜

a μν

+

dW 3 fabcF a μρF ν



Fcμν

+ ...,

(1) where Fa

μν denotes the SM gauge field strength and F

˜

μνa

=

1

2

μνρσ F

aμν is its dual. In view of that the SM weak interac-tions breakCPexplicitlythroughthecomplexYukawacouplings,1

itisquiteplausiblethattheunderlyingdynamicsof S generically breaks CP, which would result in nonzero value of the effective couplings

κ

s

κ

p

/



κ

2

s

+

κ

2p and dW.Asiswell known,inthe pres-enceofthoseCPviolatingcouplings,a nonzeroneutronorelectron EDM can be induced through the loops involving the SM gauge fields

[10–13]

.

In this paper, we examine the neutron and electron EDM in models for the 750 GeV resonance, in which the effective in-teractions (1) are generated by the loops of massive vector-like fermions.2 We find that for the parameter region to give the

1 Throughoutthispaper,weassumetheCPinvarianceinthestronginteractionis duetotheQCDaxionassociatedwithaPeccei–QuinnU(1)symmetry[9].

2 AsimilarstudywascarriedoutrightafterthediscoveryoftheHiggsboson, consideringCP-oddcouplingsoftheHiggsboson[14,15].

http://dx.doi.org/10.1016/j.physletb.2016.07.056

0370-2693/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

diphoton cross section

σ

(

pp

γ γ

)

=

1

10 fb, the neutron EDM can be comparableto the present experimental bound, e.g. dn

a few

×

10−26e cm,iftheCP-violatingangle

α

inthe under-lying dynamicsis of

O(

10−1

)

,where sin 2

α

κ

s

κ

p

/



κ

2 s

+

κ

2p in termsoftheeffectivecouplingsin(1).Anelectron EDMnearthe presentbound canbe obtainedalsothrougha mixingbetween S andtheSM Higgsboson H .Wefindthat againfortheparameter regionof

σ

(

pp

γ γ

)

=

1

10 fb, theelectronEDM isgivenby de

6

×

10−26sin

ξ

S Hsin

α

e cm,where

ξ

S H isthe S

H mixing angle.3 OurresultontheneutronEDMcanbeappliedalsotothe models in which S corresponds to a composite pseudo-Nambu– GoldstonebosonformedbyaQCD-likehypercolordynamics which isconfiningat



HC[16–19].Inthiscase,theCP-violatingorder pa-rameter

α

canbeidentifiedas

α

∼ θ

HCm2S

/

2HC,where

θ

HCdenotes thevacuumangleoftheunderlyingQCD-likehypercolordynamics. The organization of this paperis as follows. In section 2, we introduce a simple model for the 750 GeV resonance involving CPviolatinginteractions, andsummarizethe diphotonsignalrate given by the model. In section 3, we examine the neutron and electronEDMinthemodelofsection2,anddiscusstheconnection betweentheresultingEDMsandthediphotonsignalrate.Although wearefocusingonaspecificmodel,ourresultscanbeusedforan estimationofEDMsinmoregeneric modelsforthe750 GeV res-onance.In section 4, weapply ourresultto the casethat S isa compositepseudo-Nambu–Goldstonebosonformedby aQCD-like hypercolordynamics.Section5istheconclusion.

2. AmodelfordiphotonexcesswithCPviolation

The750 GeVdiphoton excesscan be explainedmost straight-forwardlybyintroducingaSM-singletspinzeroresonanceS which couples to massive vector-like fermions to generatethe effective interactions (1) [7]. To be specific, here we consider a simple modelinvolvingNF Diracfermions

= (

1

,

2

,

...,

NF

)

carrying

acommoncharge undertheSM gaugegroup SU

(

3

)

c

×

SU

(

2

)

L

×

U

(

1

)

Y.ThenthemostgeneralrenormalizableinteractionsofS and

include

L

= ¯

i/D

− ¯



M

+

YsS

+

iYpSγ5



1 2m 2 SS2

AS HS

|

H

|

2

+ ...,

(2)

wherethemassmatrix M canbechosen toberealanddiagonal, whileYs,p arehermitianYukawacouplingmatrices.Here H isthe SM Higgsdoublet, andwe have chosen the field basis forwhich S has avanishingvacuumexpectationvalueinthelimittoignore itsmixingwithH .Forsimplicity,inthefollowingweassumethat all fermion massesand the Yukawa couplings are approximately flavor-universal,sotheycanbeparametrizedas

M

m 1NF×NF

,

Ys

yScos

α

1NF×NF

,

Yp

ySsin

α

1NF×NF

,

(3) where1NF×NF denotestheNF

×

NF unitmatrix.Notethatinthis

parametrizationsin 2

α

correspondstotheorderparameterforCP violation.Inthe following,wewilloftenuse

α

(orsin

α

) asaCP violatingorderparameter,althoughitshouldbe

α

π

/

2 (orcos

α

) foranapproximatelypseudoscalarS.

Undertheaboveassumptiononthemodelparameters,onecan computethe1PIamplitudesfortheproductionanddecayofS at theLHC,yielding[7]

3 Notethatifξ

S H correspondstoaCP-violatingmixingangle,thensinαinthis

expressionisnotaCP-violatingparameteranymore,andthereforeisaparameterof orderunity.

L

1PI

=

g2 3 16

π

2m S S



c(3s)GaμνGaμν

+

c(3p)Gaμν



Gaμν



+

g22 16

π

2m S S



c(2s)WaμνWaμν

+

c(2p)Wμνa



Waμν



+

g21 16

π

2m S S



c(1s)BμνBμν

+

c(1p)Bμν



Bμν



,

(4) where c(is)

=

NFyScos

α

Tr

(

Ti2

( ))

mS m A1/2

(

τ

)

2

,

c(ip)

= −

NFySsin

α

Tr

(

Ti2

( ))

mS m f

(

τ

)

τ

,

(5)

with i

=

1

,

2

,

3 denoting the SM gauge groups U

(

1

)

Y, SU

(

2

)

L, SU

(

3

)

c, respectively, and

τ

m2S

/

4m2 . The loop functions

A1/2

(

τ

)

and f

(

τ

)

aregivenby

A1/2

(

τ

)

=

2



τ

+ (

τ

1

)

f

(

τ

)

]/

τ

2

,

f

(

τ

)

= −

1 2 1



0 dx1 xln

[

1

4x

(

1

x

)

τ

]

=

(

arcsin

τ

)

2

,

τ

1

1 4

ln



1+1−τ−1 1−1−τ−1





2

,

τ

>

1

.

(6)

Note that with a nonzero value of the CP violating angle

α

, the 750 GeV resonance S couples to both Fa

μν Faμν and Faμν



Faμν . Thesetwocouplingsturnouttoincoherentlycontributetothe de-cayrateofS,sothattherelevantdecayratesaregivenby



γ γ

=

1 4

π



e2 16

π

2



2 mS





cγ(s)





2

+





cγ(p)





2



,

(7)



gg

=

8 4

π



g23 16

π

2



2 mS





c(gs)





2

+





c(gp)





2



,

(8)

in the rest frame of S. The diphoton signal cross section atthe LHCcan beestimatedusingthe narrowwidthapproximation[7], yielding

σ

(

pp

S

γ γ

)

=

Cgg 1 s mS



S



γ γ mS



gg mS

,

(9)

wherethecoefficient Cgg

=

2137 at

s

=

13 TeV,and



S denotes thetotaldecaywidthofS.Manipulatingthis,thedecayrateshould satisfythefollowingrelation,



γ γ mS



gg mS

=

2

.

17

×

10−9





S 1 GeV

 

σ

signal 8 fb



,

(10)

forthesignalcrosssection

σ

signal

σ

(

pp

γ γ

)

=

1

10 fb.Here we normalizethe totaldecayrateof S by



S

=

1 GeV,sinceit is a typicalvalue whenthere isan appreciablemixingbetweenthe singletscalar S andtheSMHiggsdoublet[20].

Plugging(5)and(7),

(8)

into(10),we obtainarelation which isusefulforanestimationoftheelectricdipolemomentsoverthe diphotonsignalregion:

m yS

=

96 GeV

×

Q NF



2 3Tr

(

T 2 3

( ))

Tr

(

1

( ))



1/2

×



1 GeV



S



1/4



8 fb

σ

signal



1/4 R

,

(11)

(3)

where R

(

α

,

τ

=

m2S

/

4m2

)

=



c2 α

(

A1/2

(

τ

)/

2

)

2

+

s2α

(

f

(

τ

)/

τ

)

2 c20.1

(

A1/2

(

1

/

4

)/

2

)

2

+

s20.1

(

4 f

(

1

/

4

))

2



1/2

=

O

(

1

).

Here Q and T3

( )

denotetheelectromagneticandcolorcharge

of

,respectively, Tr

(

1

( ))

isthe dimensionof thegauge group representationof

,and

=

sin

α

and

=

cos

α

.Notethat R

representsthedependenceon

τ

=

m2S

/

4m2 and

α

,whichis

nor-malizedtothevalue at

τ

=

1

/

4 and

α

=

0

.

1.As R hasamild

dependenceon

τ

and

α

,therangeoftheparameterratiom

/

yS which would explain the diphoton excess can be easily read off fromtheaboverelation.

ToseetheoriginoftheCPviolatingangle

α

,onemayconsider aUV completion ofthemodel(2).Inregard tothis, anattractive possibility is that the model is embedded at some higher scales intoasupersymmetricmodelincludingasingletsuperfield

φ

and NF flavorsofvector-likechargedmattersuperfields

ψ

c [21,22]. Themostgeneralrenormalizablesuperpotential of

φ

and

ψ

+ ψ

c isgivenby W

= (

M

+

Y

φ)ψ ψ

c

+

1 2

μ

φ

φ

2

+

1 3

κ

φ

3

,

(12)

wherewithoutlossofgenerality M canbe chosentobe realand diagonal, det

(

Y

)

to be real, and

φ

to have a vanishing vacuum value in the limit to ignore the mixingwith the Higgsdoublets. Again, for simplicitylet us assume that the mass matrix M and theYukawacouplingmatrixY are approximatelyflavor-universal, andtherefore

M

m 1NF×NF

,

Y

yS1NF×NF

.

(13)

Including the soft supersymmetry (SUSY) breaking terms, the scalarmasstermof

φ

isgivenby



|

μ

φ

|

2

+

m2φ



|φ|

2

+

1 2



μ

φ

φ

2

+

h.c.



,

(14)

where isaSUSY breakingsoftscalarmass,while B isa

holo-morphicbilinearsoftparameter.Notethatinourprescription,both

μ

φ and arecomplexingeneral.

Without relying on any fine tuning other than the minimal one tokeep the SM Higgsto be light, onecan arrange theSUSY modelparameters to identifythe lighter masseigenstate of

φ

as the750 GeVresonanceS,andthefermioncomponentsof

ψ

+ ψ

c astheDirac fermion

to generatethe effectiveinteractions (4), while keeping all other SUSY particles heavy enough to be in multi-TeVscales.Thenourmodel(2)arisesasalowenergy effec-tive theoryatscales around TeVfromtheSUSY model(12),with thematchingcondition

1

2S

=

Re

(φ)

cos

α

+

Im

(φ)

sin

α

,

where tan 2

α

=

Im

(

μ

φ

)

Re

(

μ

φ

)

.

(15)

Another possibility, which is completely different but equally interesting, would be that S corresponds to a pseudo-Nambu– GoldstonebosonformedbyaQCD-likehypercolordynamicswhich confinesatscalesnearTeV.Aswewillseeinsection4,theCP vi-olatingorderparameter

α

insuchmodelscanbeidentifiedas sin 2

α

m2S



2HCsin

θ

HC

,

(16)

Fig. 1. TheWeinberg’sthreegluoninteractiongeneratedasatwo-loopthreshold correction.Herethesmalldarksquarerepresentstheγ5-couplingofS tothe vector-likefermion .

where



HC isthescale ofspontaneouschiralsymmetry breaking bythehypercolordynamicsand

θ

HC isthehypercolorvacuum an-gle.

3. Electricdipolemoments

Inthissection,weestimatetheelectricdipolemoments(EDMs) inducedbythe750 GeVsectorintermsofthemodelintroducedin theprevioussection.Atenergyscalesbelowm andmS,theheavy fermions

andthesingletscalar S canbeintegratedout, while leavingtheirfootprintsintheeffectiveinteractionsamongtheSM gauge bosons and Higgs boson. Then those effective interactions eventuallygeneratethenucleonandelectronEDMsinthelow en-ergy limit through the loops involving the exchange of the SM gaugebosonsand/ortheHiggsboson.Inthisprocess,oneneedsto take intoaccounttherenormalizationgroup (RG)running, partic-ularlythoseduetotheQCDinteractions,fromtheinitialthreshold scalem

mS downtothehadronicscale



QCD,aswellasthe in-termediate thresholdcorrectionsfromintegratingoutthemassive SMparticles.

To simplifythecalculation, we willignore theRGrunning ef-fectsduetotheQCD interactionsover thescalesfromm tothe

SM Higgsboson mass mH

=

125 GeV. In thisapproximation, the WilsonianeffectiveinteractionsatscalesjustbelowmH canbe de-termined by the leading order Feynman diagramsinvolving

,

S and the SM Higgs boson. We then take into account the subse-quentRGrunningduetotheQCDinteractions frommH to



QCD, while ignoring the threshold corrections due to the SM heavy quarks,toderivethelowenergyeffectivelagrangianatscalesjust above



QCD.

3.1. NeutronEDM

TheleadingcontributiontotheneutronEDMturnsouttocome from the Weinberg’s three gluon operator [10] generated by the diagramin

Fig. 1

.Inthepresenceofamixingbetweenthesinglet scalar S and the SM Higgs boson H ,the EDM andchromo EDM (CEDM)oflightquarksareinducedbytheBarr–Zeediagrams[11]

in

Fig. 2

,whichmayprovideapotentially importantcontribution totheneutronEDM.

Tobeconcrete,letustakeasimplemodelhavingNF vector-like Diracfermions

transformingunderSU

(

3

)

c

×

SU

(

2

)

L

×

U

(

1

)

Y as

= (

3

,

1

)

Y

,

(17) where Y denotes the U

(

1

)

Y hypercharge of

. As mentioned above, we take an approximation to ignore the RG running due tothe QCDinteractionsbetweenm andmH

=

125 GeV.Thenat scalesjustbelowmH,therelevantWilsonianeffectiveinteractions aredeterminedtobe

[10,23–26]

,

(4)

Fig. 2. The Barr–Zee diagrams for the EDM and chromo EDM (CEDM) of light fermions. The small cross denotes the SH mixing.

L

eff

(

mH

)

= −

dW

(

mH

)

6 fabc

μνρσGa ρσGbμλGcνλ

i 2



q



dq

(

mH

)

eqσ

¯

μν

γ

5qFμν

+ ˜

dq

(

mH

)

g3

¯

μν

γ

5T3aqGaμν



,

(18) with dq

(

mH

)

=

4NF e2

(

4

π

)

4 mq v



6Y 2 yS m sαsξcξ



×



Qq

+



t2wQq

Tq3L 2c2 w

 

g



m2 m2 H



g



m2 m2 S



,

˜

dq

(

mH

)

=

4NF g23

(

4

π

)

4 mq v



yS m sαsξcξ



×



g



m2 m2H



g



m2 m2S



,

dW

(

mH

)

= −

NF g3 3

(

4

π

)

4 y2S m2 cαsα



s2ξh



m2 m2H



+

c2ξh



m2 m2S



,

(19) whereq

=

u

,

d

,

s standsforthelightquarkspecies,

=

sin

α

,

=

sin

ξ

S H forthe S

H mixing angle

ξ

S H, v

=

246 GeV is the SM Higgsvacuumvalue,cw

=

cos

θ

w,tw

=

tan

θ

w fortheweakmixing angle

θ

w,andtheloopfunctionsg andh aregivenby4

g

(

z

)

z 2 1



0 dx 1 x

(

1

x

)

zln x

(

1

x

)

z

,

h

(

z

)

z2 1



0 dx 1



0 dy x 3y3

(

1

x

)

[

zx

(

1

xy

)

+ (

1

x

)(

1

y

)

]

2

.

(20) Letusrecallthattheparameterratiom

/

yS hasaspecific connec-tionwiththediphotoncrosssection

σ

(

pp

γ γ

)

,whichisgiven by(11).ThisallowsustoestimatetheexpectedsizeoftheEDMs intermsofafewmodelparameterssuchas

α

and

ξ

S H.

In order to estimate the resulting neutron EDM, we should bringtheeffectiveinteractions(18)downtotheQCDscalethrough theRGevolution.Forthis, it isconvenientto redefinethe coeffi-cientsas C1

(

μ

)

=

dq

(

μ

)

mqQq

,

C2

(

μ

)

=

˜

dq

(

μ

)

mq

,

C3

(

μ

)

=

dW

(

μ

)

g3

,

(21)

4 Itisusefultonotetheasymptotic behavioroftheloopfunctions:h (z1)

z ln(1/z),h(z 1)1/4,andg(z 1)1+ (ln z)/2.

whicharesatisfyingtheRGequation

[27,28]

:

μ

C

μ

=

g23

16

π

2

γ

C

,

(22)

withtheanomalousdimensionmatrix

γ

γ

0e

γ

γ

eqq

γ

0Gq 0 0

γ

G

=

8C0F 16C8CF

F4Nc 2N0c 0 0 Nc

+

2nf

+ β

0

⎠ ,

(23)

whereC

= (

C1

,

C2

,

C3

)

T,Nc

=

3 isthe numberofcolor, CF

=

4

/

3 isaquadraticCasimir,nf isthenumberofactivelightquarks,and

β

0

= (

33

2nf

)/

3 istheone-loopbetafunctioncoefficient.Solving thisRGequations,onefinds[27]

C1

(

μ

)

=

η

κeC1

(

mH

)

+

γ

qe

γ

e

γ

q

(

η

κe

η

κq

)

C 2

(

mH

)

+

γ

Gq

γ

qe

η

κe

(

γ

q

γ

e

)(

γ

G

γ

e

)

+

γ

Gq

γ

qe

η

κq

(

γ

e

γ

q

)(

γ

G

γ

q

)

+

γ

Gq

γ

qe

η

κG

(

γ

e

γ

G

)(

γ

q

γ

G

)



C3

(

mH

),

C2

(

μ

)

=

η

κqC2

(

mH

)

+

γ

Gq

γ

q

γ

G



η

κq

η

κG



C 3

(

mH

),

C3

(

μ

)

=

η

κGC3

(

mH

),

(24)

where

η

g32

(

mH

)/

g23

(

μ

)

and

κ

x

=

γ

x

/(

2

β

0

)

.Theanalytic expres-sions for Ci

(

μ

∼ 

QCD

)

in terms of Ci

(

mH

)

are complicated ex-cept C3,howeverfortunatelyitturnsoutthatthedominant contri-butiontotheneutronEDMcomesfromC3

(

μ

∼ 

QCD

)

.From(24), weobtain dW

(

μ

)

=



g3

(

mc

)

g3

(

μ

)

 

g3

(

mb

)

g3

(

mc

)



33 25



g3

(

mH

)

g3

(

mb

)



39 23 dW

(

mH

).

(25)

Itcanbeshownnumericallythatdq

(

μ

)

andd

˜

q

(

μ

)

alsogeta sim-ilar amountof suppressionby the RGevolutioncompared tothe highscalevaluesatmH.

Now one can relate the Wilsonian coefficients dW

(

μ

),

dq

(

μ

)

andd

˜

q

(

μ

)

at

μ

∼ 

QCDtotheneutronEDM:

i

2dnnσ

¯

μν

γ

5nFμν

,

(26)

whichisthemostambiguousstep.Forthis,onecantaketwo ap-proaches, theNaive Dimensional Analysis (NDA)[29] or theQCD sum rule [30–32], essentially yielding similar results. As for the neutronEDMestimatedbytheNDA,onefinds

dn

/

e

=

O

(

dq

(

μ

))

+

O

dq

(

μ

)/

(5)

where the corresponding scale

μ

is chosen to be the one with g3

(

μ

)



4

π

/

6 [10]. Onthe other hand,applying the QCD sum rulefortheneutronEDMdqn fromthe(C)EDMoflightquarks,one findsamoreconcreteresult5[32]:

dqn

/

e

 −

0

.

2du

(

μ

)

+

0

.

78dd

(

μ

)

+

0

.

29d

˜

u

(

μ

)

+

0

.

59d

˜

d

(

μ

),

(28) for

μ

=

1 GeV. Asforthe neutronEDM dW

n fromthe Weinberg’s threegluonoperatorintheQCDsumruleapproach,onesimilarly finds[33]

|

dWn

/

e

| =



1

.

0+10..05



×

20 MeV

× |

dW

(

μ

)

|

(29) for

μ

=

1 GeV.Wecannowmakeacomparisonbetweenthe neu-tronEDMdnW originatingfromdW

(

μ

)

andtheotherpartdnq origi-natingfromdq

(

μ

)

andd

˜

q

(

μ

)

.WithintheQCDsumruleapproach, wefindnumerically

dqn

/

dnW



3 sin

ξ

S H

+

0

.

07

.

(30) This implies that the neutron EDM is dominated by the contri-bution from the Weinberg’s three gluon operator for the S

H mixingangle

ξ

S H



0

.

1,whichmightbe requiredtobeconsistent withtheHiggsprecisiondata

[20,34,35]

.6

With the above observation, plugging (11), (19) and (25)

into(29),weobtainthefollowingexpressionfortheexpected neu-tron EDMoverthe750 GeVsignalregion:

dn

/

e



3

×

10−25cm

×

cαsα NFY 2





S 1 GeV

 

σ

signal 8 fb



×

Rn

,

(31) where Rn

=



h

(

4

τ

)

h

(

1

)

 

c2 0.1

(

A1/2

(

1

/

4

)/

2

)

2

+

s20.1

(

4 f

(

1

/

4

))

2 c2 α

(

A1/2

(

τ

)/

2

)

2

+

s2α

(

f

(

τ

)/

τ

)

2



1/2

=

O

(

1

).

Here Rn represents the dependence on the loop functions A1/2, f andh definedin(6)and(20),whichisnormalizedtothevalue at

τ

=

m2S

/

4m2

=

1

/

4 and

α

=

0

.

1. With this result, one can

easily see that the neutron EDM from the 750 GeV sector satu-ratesthecurrentexperimentalupperbound

3

×

10−26e cm[37] fortheparameterregionwithsin 2

α

/

NFY 2

0

.

1.Inaddition,we

notethatdespiteoftheoreticaluncertainties, a recent experimen-talboundonmercuryEDMcouldgiveafactortwostrongerbound ontheneutron EDM,

|

dn

|

<

1

.

6

×

10−26e cm[38],leadingtoa fac-tortwo stronger constraint on sin 2

α

/

NFY 2. In

Fig. 3

,we depict

the resultingneutron EDM as afunction of CP violating angle

α

forthe model parameters which give the diphoton cross section

σ

(

pp

γ γ

))

=

1

10 fb.Thegrayregionabovethesolid lineis excludedby[37],whilethelightgrayregionabovethedashedline isexcludedbyHgEDM[38].

3.2. ElectronEDM

In the presence ofthe S

H mixing, a sizable electron EDM can arise from the Barr–Zee diagram in Fig. 2. In case of the

5 Weareusing“themodifiedQCDsumrule”obtainedbyassumingthePeccei– QuinnmechanismtodynamicallycanceltheQCDvacuumangle.

6 IfoneusestheNDAruleorthechiralperturbationtheory[36],theresulting neutronEDMinducedbythe(C)EDMofthestrangequarkcanbecomparableto thecontributionfromtheWeinberg’sthreegluonoperatorforthe SH mixing angleξS H∼0.1.

Fig. 3. TheneutronelectricdipolemomentasafunctionoftheCPviolatingangle αforthemodelparameterstogiveσsignal=1–10 fb.Forthisplot,wechoosethe totaldecaywidthofS asS=1 GeV,thenumberofDiracfermions asNF=1,

themassandU(1)Y hypercharge of asm =750 GeV andY =1.(For inter-pretationofthereferencestocolorinthisfigure,thereaderisreferredtotheweb versionofthisarticle.)

model with NF flavors of

= (

3

,

1

)

Y , we obtain the electron

EDM

ie

2de

(

μ

)

¯

μν

γ

5e Fμν

,

(32)

withthecoefficient[25,26] de

= −

24NF e2

(

4

π

)

4 me v



Y 2 yS m sαsξcξ



1

+

t2w

1 4c2w



×



g



m2 m2H



g



m2 m2S



,

(33)

wheretheloopfunctiong

(

z

)

isgivenin(20)andtheother param-etersaredefinedassameasin(19).Applyingtherelation(11)for theaboveresult,wefind

de

= [−

5

.

9

×

10−26cm

]

×

sαsξcξY





S 1 GeV



1/4



σ

signal 8 fb



1/4

×

Re

,

(34) where Re

=



g

(

m2S

/

4

τ

m2H

)

g

(

1

/

4

τ

)

g

(

m2S

/

m2H

)

g

(

1

)



×



c20.1

(

A1/2

(

1

/

4

)/

2

)

2

+

s20.1

(

4 f

(

1

/

4

))

2 c2 α

(

A1/2

(

τ

)/

2

)

2

+

s2α

(

f

(

τ

)/

τ

)

2



1/2

=

O

(

1

)

for

τ

=

m2S

/

4m 2.TheaboveresultshowstheelectronEDM

asso-ciatedwiththeS

H mixingcansaturatethecurrentexperimental upperlimit8

.

7

×

10−29cm[39] whensin

α

sin

ξ

S H

=

O(

10−3

)

.In

Fig. 4,wedepicttheelectronEDMoverthe750 GeVsignalregion forthetwodifferentvaluesoftheS

H mixingangle:

ξ

S H

=

10−1 and10−2.

The electron EDM is sensitive to sin

α

sin

ξ

H S. On the other hand, theneutron EDM issensitive to the sin 2

α

. Thisallows us toderivecombinedconstraintsonthetwoangleparameters

α

and

ξ

H S.In

Fig. 5

,wepresent theboundson

(

α

,

ξ

H S

)

fromtheelectron andneutronEDMs.

If the vector-like fermions

carry a nonzero SU

(

2

)

L charge, therecanbeanonzeroelectronEDMeveninthelimit

ξ

S H

=

0.For

(6)

Fig. 4. Theelectron electric dipolemoment for the minimal model with = (3,1)Y , m =750 GeV,ξS H= (10−

1,10−2),Y

=1, S=1 GeV,andσsignal= 1–10 fb.

Fig. 5. Constraintsonthe angleparameters(α,ξH S)fromEDMs.Thegreen

dot-dashedlinerepresentstheneutronEDM,whilethebluedashedlineisthe elec-tronEDM. HereweuseS=1 GeV,σsignal=8 fb,m =750 GeV,Y =1.The blueshadedregionisexcludedbythecurrentexperimentalresultontheelectron EDM[39],whilethegreenshadedregionisexcludedbythecurrentexperimental resultsontheneutronEDM[37,38].TheredshadedregionisexcludedbytheHiggs bosonpropertiesmeasuredbytheLargeHadronCollider[20,34,35].(For interpre-tationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle.)

instance,inthemodelwith NF flavorsof

= (

3

,

2

)

Y ,a CP-odd

threeW -bosonoperatoroftheform

˜

dW 3

i jkW i μρW ν



Wkμν

canbe generatedby the loopsof

. Following

[12,13]

,7 we find

theresultingelectronEDMisgivenby

7 Theauthorsin[13]noticedthatthe resultisscheme-dependent.Thismeans thatthepreciseresultdependsonthedependenceofd˜W ontheexternalW -boson



de

 −

NF 4 g42

(

16

π

2

)

3me y2S m2 cαsα



s2ξh



m2H m2



+

c2ξh



m2S m2



 [−

6

.

5

×

10−31cm

] ×

cαsα NFQ 2





S 1 GeV

 

σ

signal 8 fb



× ˜

Re

,

(35) where

˜

Re

=



cξ2h

(

4

τ

)

+

s2ξh

(

m2H

/

m2

)

c20.1h

(

1

)

+

s02.1h

(

m2H

/

m2S

)



×



c20.1

(

A1/2

(

1

/

4

)/

2

)

2

+

s20.1

(

4 f

(

1

/

4

))

2 c2 α

(

A1/2

(

τ

)/

2

)

2

+

s2α

(

f

(

τ

)/

τ

)

2



1/2

=

O

(

1

).

Forsin 2

α



0

.

1,whichmightberequiredtosatisfytheboundon theneutronEDM,theresultingelectronEDMisaboutthreeorders ofmagnitudesmallerthan thecurrentbound,thereforetoosmall tobeobservableinaforeseeablefuture.

4. Compositepseudo-Nambu–Goldstoneresonance

In the previous section, we discussed the neutron and elec-tron EDM in models where the 750 GeVresonance is identified as an elementary spin zero field (at least at scales around TeV) which couples to vector-like fermions to generate the effective couplingsto explainthediphoton excess

σ

(

pp

γ γ

)

5 fb. On the other hand,it has beenpointed out that in most cases this scheme confronts with a strong coupling regime at scales not far above the TeV scale [40–42]. Inregard to this, an interesting possibility is that S corresponds to a composite pseudo-Nambu– Goldstone (PNG) boson of the spontaneously broken chiral sym-metry ofa newQCD-like hypercolor dynamics whichconfines at



HC

=

O(

1

)

TeV[16–18].Asiswellknown,suchmodelsinvolvea unique sourceofCPviolation, thehypercolor vacuumangle

θ

HC,8 which can yield a nonzero neutron or electron EDM in the low energylimit[16].

To proceed, we consider a specific example, the model dis-cussedin[17],involvingahypercolorgauge group SU

(

N

)

HC with chargedDiracfermions

(ψ,

χ

)

whichtransformunder SU

(

N

)

HC

×

SU

(

3

)

c

×

SU

(

2

)

L

×

U

(

1

)

Y as

ψ

= (

N

,

3

,

1

)

,

χ

= (

N

,

1

,

1

)

,

(36) where Yψ,χ denotethe U

(

1

)

Y hypercharge.At scalesabove



H C, thelagrangianofthehypercolorcolorsectorisgivenby

L

HC

= −

1 4g2 HC HaμνHaμν

θ

HC 32

π

2H aμν



Ha μν

+ ¯ψ

i/D

ψ

+ ¯

χi/

− ¯ψ

ψ

− ¯

χm

χ

χ

,

(37) where Haμν denotes the SU

(

N

)

HC gauge field strength,



Haμν is its dual,andthefermionmassesmψ,χ arechosen tobe realand

γ

5-free. For a discussion of the low energy consequence of the CP-violating vacuumangle

θ

HC, itis convenient to make a chiral rotationoffermionfieldstorotateaway

θ

HC intothephaseofthe fermionmassmatrix,whichresultsin

M

=

diag



mψeixψθHC

,

mψeixψθHC

,

mψeixψθHC

,

mχeixχθHC



,

(38)

momenta.Herewesimplyusetheresultfromthedimensionalregularizationfor thepurposeofestimationoftheelectronEDM.

8 Aphenomenologicalstudyofthehypercolorvacuumangleondiphotonexcess has beencarriedoutinRef.[43].

(7)

where 3xψ

+

=

1

.

Formψ,χ



HC,themodelisinvariantunderan approximate chiralsymmetry SU

(

4

)

L

×

SU

(

4

)

R whichisspontaneouslybroken downtothediagonalSU

(

4

)

V bythefermionbilinearcondensates:

| ¯ψ

L

ψ

R

|  | ¯

χ

L

χ

R

| 

N

16

π

2



3

HC

.

(39)

Thecorresponding pseudo-Nambu–Goldstone(PNG)boson canbe described by an SU

(

4

)

-valued field U

=

exp

(

2i

/

f

)

whose low energydynamicsisgovernedby

L

eff

=

1 4f 2tr



D μU DμU



+

μ

3tr



MθU

+

h.c.



+

L

WZW

+

L

CPV

...,

(40)

wherethenaivedimensionalanalysissuggests

f2



N 16

π

2



2 H

,

μ

3



N 16

π

2



3 H

,

(41)

and

L

WZW and

L

CPV denote the Wess–Zumino–Wittenterm and the additionalCP-violating term, respectively. For a discussion of CPviolationdueto

θ

HC

=

0,itisconvenienttochoosethefermion massmatrix as

i 2





=

14×4

,

(42)

for which the PNG boson has a vanishing vacuum expectation value.ThentheCPviolationdueto

θ

HC

=

0 isparametrizedsimply by

sin

θ

HC

!

=

mχsin xχ

θ

HC

!

3xψ

+

=

1

!

,

(43) whichmanifestlyshowsthat CPisrestoredif

θ

HC oranyofmψ,χ is vanishing. In the limit

HC

|

1, this order parameter for CP violationhasasimpleexpression:



θ

HC tr



M¯θ1 H=0

 =

mψmχ 3mχ

+

θ

HC

.

(44)

The PNG bosons of SU

(

4

)

L

×

SU

(

4

)

R

/

SU

(

4

)

V include a unique SM-singletcomponent S whichcan be identifiedasthe750 GeV resonance:



=

1

2

6diag

(

S

,

S

,

S

,

3S

)

+ · · · ,

(45)

whereU

=

exp

(

2i

/

f

)

,andtheellipsis denotesthe SU

(

3

)

c octet andtripletPNGbosonswhichareheavierthan S.ThentheWess– Zumino–Wittentermgivesrisetothefollowingeffectivecouplings between S and the SM gauge bosons, which would explain the diphotonexcess:

L

WZW

= −

N 16

π

2 S f



1 2

6g 2 3Gaμν



Gaμν

+

6 2 g1 2



Y2 ψ

2



Bμν



Bμν



+ · · · .

(46)

With

=

0,accordingtotheNDA,theunderlyinghypercolor

dy-namics generatesthe following CPviolating effective interactions renormalizedat



HC:

L

CPV

=

N 16

π

2



H S f

×



cGg23GaμνGaμν

+

cBg2



Y2ψ

Yχ2



BμνBμν



Fig. 6. Theexpectedneutronelectric dipolemomentasafunctionofthe hyper-colorvacuumangleθHCinmodelsforacompositePNG750 GeVresonance.Forthe analysis,weassume=,andamixingbetweenPNGbosonS andtheHiggs bosonwhichallowustotakeS=1 GeV asabenchmarkvalue.Wealsochoose

N=3,=1/3 and=1.

+

N 16

π

2



H

κ

G



2H g33fabc 3 G a μρGbνρ



Gcμν

+ · · · ,

(47) wherecG

,

cB and

κ

G arealloforderunity.

Itisnowstraightforwardtouseourpreviousresultstofindthe nucleon and electron EDM induced by the above effective inter-actions. Bymatching the coefficientsof the relevant interactions withthesimplemodelpresentedinsection2,wefindthe follow-ingcorrespondence: yS m

N 2 f

,

sin 2

α

m2S



2HCsin

θ

HC

,

(48)

wherewehaveusedtherelation

m2S

= (

750 GeV

)

2



(

+

3mχ

)

μ

3

f2

 (

+

3mχ

)

HC

.

(49)

Since theratio m

/

yS shouldbe around 100 GeVto explain the 750 GeV diphoton excess, it turns out that f

N

×

50 GeV and



HC



4

π

f

/

N

N TeV,implyingthatroughlysin 2

α

isa few factor smallerthan

θ

HC. In

Fig. 6

,we depict theneutron EDM in the minimal modelfor a composite PNG 750 GeVresonance for theparameterregiontogive

σ

(

pp

γ γ

)

=

1

10 fb.

The minimal model of [17] can be generalized or modified to include a hypercolored fermion carrying a nonzero SU

(

2

)

L charge [16],e.g.

χ

can transformas

(

N

,

1

,

2

)

under SU

(

N

)

H

×

SU

(

3

)

c

×

SU

(

2

)

L

×

U

(

1

)

Y. Then the hypercolor dynamic with nonzero

θ

HCcangeneratethefollowingCP-oddthreeW -boson op-erator:



L

CPV

=

N 16

π

2



H

κ

W



2H g23

i jk 3 W i μρWνjρ



Wkμν

,

(50) where

κ

W

=

O(

1

)

accordingtotheNDArule.Applyingour previ-ous result(35)undertherelation(48),wefindtheelectronEDM resulting fromtheabove three W -bosonoperator istoo smallto beobservableevenwhen

θ

HC

=

O(

1

)

.

Finally let us note that a composite PNG boson S can have a mixing withthe SM Higgs boson if the underlying hypercolor modelincludesahigherdimensionaloperatoroftheform:

1



ψ

|

H

|

2

¯ψ

L

ψ

R

+

1



χ

|

H

|

2

χ

¯

L

χ

R

+

h.c.

,

(51)

(8)

where



ψ,χ are complex in general. For instance, this form of dim

5 operatorscanbegeneratedbyanexchangeofheavyscalar field

σ

whichhasthecouplings

L

σ

= −

1 2m 2 σ

σ

2

+

σ

|

H

|

2

+

λ

ψ

σ

¯ψ

L

ψ

R

+ λ

χ

σ

χ

¯

L

χ

R

+

h.c.

!

+ ...,

(52) yielding 1



ψ

=

λ

ψ m2 σ

,

1



χ

=

λ

χ m2 σ

.

Theresulting S

H mixingangleisestimatedas

ξ

S H

v



2HC 4

πm

2 S Im

(

ψ,χ

)

|

ψ,χ

|

2

,

(53)

where v

=

246 GeV is the vacuum value of the SM Higgs dou-blet H . One can apply this mixing angle for our previous result

(34)toestimatetheresultingelectronEDM.NotethathereS isan approximatelypseudoscalarboson,andtherefore

ξ

S H corresponds toaCP-violatingmixingangle,whilesin

α

isCP-conservingandof orderunity.OnethenfindsthecurrentboundontheelectronEDM implies



HC

|

ψ,χ

|

Im

(

ψ,χ

)

|

ψ,χ

|



O

(

10−2

).

(54) 5. Conclusion

Therecentlyannounceddiphotonexcessat750 GeVintheRun II ATLAS andCMSdatamayturn out tobe the firstdiscovery of newphysicsbeyondtheStandardModelatcolliderexperiments.In thispaper,weexaminedtheimplicationofthe750 GeVdiphoton excessfortheEDMofneutronandelectroninmodelsinwhichthe diphotonexcessisduetoa spinzeroresonance S whichcouples to photons and gluons through the loops of massive vector-like fermions.We found that a neutron EDM comparableto the cur-rentexperimentalboundcanbeobtainediftheCPviolatingorder parametersin 2

α

intheunderlyingnewphysicsisof

O(

10−1

)

.An electronEDMnearthepresentboundcan beobtainedalsowhen sin

ξ

S H

×

sin

α

=

O(

10−3

)

,where

ξ

S H isthemixinganglebetween S and the SM Higgs boson. For the case that S corresponds to a pseudo-Nambu–Goldstone boson of a QCD-like hypercolor dy-namics,one can use thecorrespondence sin 2

α

m2Ssin

θ

HC

/

2HC toestimatetheresultingEDMs,where



HC isthescaleof sponta-neouschiralsymmetry breaking by thehypercolor dynamics and

θ

HC isthehypercolor vacuumangle.In viewofthat anucleonor electronEDMnearthecurrentboundcanbeobtainedovera natu-ralparameterregionofthemodel,futureprecision measurements ofthenucleonorelectronEDMarehighlymotivated.

Acknowledgements

Thiswork was supported by IBS under the projectcode, IBS-R018-D1.

References

[1] ATLASCollaboration,ATLAS-CONF-2015-081,2015. [2] CMSCollaboration,CMS-PAS-EXO-15-004,2015.

[3] M.Delmastro,DiphotonsearchesinATLAS,Talkat51stRencontresdeMoriond EW2016,March17,2016.

[4] P.Musella,SearchforhighmassdiphotonresonancesatCMS,Talkat51st Ren-contresdeMoriondEW2016,March17,2016.

[5]S.Knapen,T.Melia,M.Papucci,K.Zurek,Phys.Rev.D93 (7)(2016)075020, arXiv:1512.04928[hep-ph].

[6]D. Buttazzo, A. Greljo, D. Marzocca, Eur. Phys. J. C 76 (3) (2016) 116, arXiv:1512.04929[hep-ph].

[7]R.Franceschini,etal.,J. HighEnergyPhys.1603(2016)144,arXiv:1512.04933 [hep-ph].

[8] S. Di Chiara, L. Marzola, M. Raidal, Phys. Rev. D 93 (9) (2016) 095018, http://dx.doi.org/10.1103/PhysRevD.93.095018,arXiv:1512.04939[hep-ph]. [9]J.E.Kim,G.Carosi,Rev.Mod.Phys.82(2010)557,arXiv:0807.3125[hep-ph]. [10]S.Weinberg,Phys.Rev.Lett.63(1989)2333.

[11]S.M.Barr,A.Zee,Phys.Rev.Lett.65(1990)21;Phys.Rev.Lett.65(1990)2920 (Erratum).

[12]W.J.Marciano,A.Queijeiro,Phys.Rev.D33(1986)3449.

[13]F.Boudjema, K.Hagiwara,C. Hamzaoui,K.Numata,Phys. Rev.D43 (1991) 2223.

[14]D. McKeen, M. Pospelov, A. Ritz, Phys. Rev. D 86 (2012) 113004, arXiv:1208.4597[hep-ph].

[15]R. Harnik, J. Kopp, J. Zupan, J. High Energy Phys. 1303 (2013) 026, arXiv:1209.1397[hep-ph].

[16]K.Harigaya,Y.Nomura,Phys.Lett.B754(2016)151,arXiv:1512.04850 [hep-ph];J. HighEnergyPhys.1603(2016)091,arXiv:1602.01092[hep-ph]. [17]Y. Nakai, R. Sato, K. Tobioka, Phys. Rev. Lett. 116 (15) (2016) 151802,

arXiv:1512.04924[hep-ph].

[18]M.Redi,A.Strumia,A.Tesi,E.Vigiani,arXiv:1602.07297[hep-ph]. [19]D.Buttazzo,A.Greljo,G.Isidori,D.Marzocca,arXiv:1604.03940[hep-ph]. [20]A. Falkowski, O.Slone, T. Volansky,J. High Energy Phys. 1602(2016) 152,

arXiv:1512.05777[hep-ph].

[21]L.J. Hall, K. Harigaya, Y. Nomura, J. High Energy Phys. 1603 (2016) 017, arXiv:1512.07904[hep-ph].

[22]H.P.Nilles,M.W.Winkler,arXiv:1604.03598[hep-ph]. [23]D.A.Dicus,Phys.Rev.D41(1990)999.

[24]T.Abe,J.Hisano,T.Kitahara,K.Tobioka,J. HighEnergyPhys.1401(2014)106, arXiv:1311.4704[hep-ph];J. HighEnergyPhys.1604(2016)161(Erratum). [25]M.Jung,A.Pich,J. HighEnergyPhys.1404(2014)076,arXiv:1308.6283

[hep-ph].

[26]W.Dekens,J.deVries,J.Bsaisou,W.Bernreuther,C.Hanhart,U.G.Meißner, A.Nogga,A.Wirzba,J. HighEnergyPhys.1407(2014)069,arXiv:1404.6082 [hep-ph].

[27]G.Degrassi, E.Franco,S.Marchetti,L.Silvestrini, J. HighEnergyPhys. 0511 (2005)044,arXiv:hep-ph/0510137.

[28]J.Hisano,K.Tsumura,M.J.S.Yang,Phys.Lett.B713(2012)473,arXiv:1205.2212 [hep-ph].

[29]A.Manohar,H.Georgi,Nucl.Phys.234(1984)189;

H.Georgi,WeakInteractionsandModernParticleTheory,Benjamin/Cummings, MenloPark,1984;

H.Georgi,L.Randall,Nucl.Phys.276(1986)241.

[30]M.Pospelov,A.Ritz,Phys.Rev.D63(2001)073015,arXiv:hep-ph/0010037. [31]J. Hisano,J.Y. Lee, N. Nagata,Y. Shimizu, Phys. Rev.D 85 (2012) 114044,

arXiv:1204.2653[hep-ph].

[32]J.Hisano,D.Kobayashi,W.Kuramoto,T.Kuwahara,J. HighEnergyPhys.1511 (2015)085,arXiv:1507.05836[hep-ph].

[33]D.A.Demir,M.Pospelov,A.Ritz,Phys.Rev.D67(2003)015007, arXiv:hep-ph/0208257.

[34]L.Berthier,J.M.Cline,W.Shepherd,M.Trott,J. HighEnergyPhys.1604(2016) 084,arXiv:1512.06799[hep-ph].

[35]K.Cheung,P.Ko,J.S.Lee,J.Park,P.Y.Tseng,arXiv:1512.07853[hep-ph]. [36]K. Fuyuto, J. Hisano, N. Nagata, Phys. Rev. D 87 (5) (2013) 054018,

arXiv:1211.5228[hep-ph].

[37]C.A.Baker,etal.,Phys.Rev.Lett.97(2006)131801,arXiv:hep-ex/0602020. [38] B.Graner,Y.Chen,E.G.Lindahl,B.R.Heckel,Phys.Rev.Lett.116 (16)(2016)

161601, http://dx.doi.org/10.1103/PhysRevLett.116.161601, arXiv:1601.04339 [physics.atom-ph].

[39]J.Baron,etal.,ACMECollaboration,Science343(2014)269,arXiv:1310.7534 [physics.atom-ph].

[40]M.Son,A.Urbano,arXiv:1512.08307[hep-ph].

[41]J.Gu,Z.Liu,Phys.Rev.D93 (7)(2016)075006,arXiv:1512.07624[hep-ph]. [42]P.S.B.Dev,R.N. Mohapatra,Y.Zhang, J. HighEnergyPhys. 1602(2016)186,

arXiv:1512.08507[hep-ph].

[43]P.Draper,D.McKeen,J. HighEnergyPhys.1604(2016)127,arXiv:1602.03604 [hep-ph].

수치

Fig. 1. The Weinberg’s three gluon interaction generated as a two-loop threshold correction
Fig. 2. The Barr–Zee diagrams for the EDM and chromo EDM (CEDM) of light fermions. The small cross denotes the S − H mixing
Fig. 3. The neutron electric dipole moment as a function of the CP violating angle α for the model parameters to give σ signal = 1–10 fb
Fig. 5. Constraints on the angle parameters ( α , ξ H S ) from EDMs. The green dot-
+2

참조

관련 문서

produces a magnetic field which can be guided by a magnetic yoke to a linear Hall sensor; the output of the sensor is proportional to the electric current..

The “Asset Allocation” portfolio assumes the following weights: 25% in the S&amp;P 500, 10% in the Russell 2000, 15% in the MSCI EAFE, 5% in the MSCI EME, 25% in the

– In an undamped mass-spring system, resonance occurs if the In an undamped mass spring system, resonance occurs if the frequency of the driving force equals the natural

The eigenvalue problem can be used to identify the limit state of the process, in which the state vector x is reproduced under the multiplication by the.. stochastic matrix

2) Molecular orientation : Molecular alignment due to the induced dipole 3) Electrostriction : Density change by optical field.. 4) Saturated absorption

electric fields will be built up in such a direction as to restore the neutrality of the plasma by pulling the electrons back to their original positions... Al,

Conflict is a dummy variable equal to one if the issuer is not fully owned by the acquirer and zero otherwise, Shares_in_Issuing_Firm is the acquirer’s ownership

To generate the restored