• 검색 결과가 없습니다.

Subclasses of Starlike and Convex Functions Associated with Pascal Distribution Series

N/A
N/A
Protected

Academic year: 2021

Share "Subclasses of Starlike and Convex Functions Associated with Pascal Distribution Series"

Copied!
12
0
0

로드 중.... (전체 텍스트 보기)

전체 글

(1)

pISSN 1225-6951 eISSN 0454-8124 c

Kyungpook Mathematical Journal

Subclasses of Starlike and Convex Functions Associated with

Pascal Distribution Series

Basem Aref Frasin∗

Faculty of Science, Department of Mathematics, Al al-Bayt University, Mafraq, Jordan

e-mail : bafrasin@yahoo.com Sondekola Rudra Swamy

Department of Computer Science and Engineering, RV College of Engineering, Ben-galuru - 560 059, Karnataka, India

e-mail : mailtoswamy@rediffmail.com Abbas Kareem Wanas

Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq e-mail : abbas.kareem.w@qu.edu.iq

Abstract. In the present paper, we determine new characterisations of the sub-classes TS∗C(α, β; γ) and TCC(α, β; γ) of analytic functions associated with Pascal dis-tribution series Φmq (z) = z − P∞ n=2 n+m−2 m−1 q n−1

(1 − q)mzn. Further, we give neces-sary and sufficient conditions for an integral operator related to Pascal distribution series Gm

q f (z) = Rz

0 Φmq(t)

t dt to belong to the above classes. Several corollaries and consequences of the main results are also considered.

1. Introduction and Definitions

LetA denote the class of the normalized functions of the form

(1.1) f (z) = z +

∞ X

n=2 anzn,

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and are normalized by the conditions f (0) = f0(0)−1 = 0. Further, letT be the subclass of A consisting

* Corresponding Author.

Received May 20, 2020; revised October 7, 2020; accepted October 13, 2020. 2020 Mathematics Subject Classification: 30C45.

Key words and phrases: Analytic functions, Hadamard product, Pascal distribution series. ORCID of the first author is 0000-0001-8608-8063.

(2)

of functions of the form (1.2) f (z) = z − ∞ X n=2 |an| zn, z ∈ U.

A function f ∈A is said to be starlike of order α(0 ≤ α < 1) if it satisfies

(1.3) R zf

0(z) f (z)



> α (z ∈ U).

Also, we say that a function f ∈A is said to be convex of order α(0 ≤ α < 1) if it satisfies (1.4) R  1 + zf 00(z) f0(z)  > α (z ∈ U).

We denote by S∗(α) andC(α) the classes of functions that starlike of order α and convex of order α in U, respectively. Further, TS∗(α) and TC(α) denote the sub-classes of T consisting of functions which are starlike of order α(0 ≤ α < 1) and convex of order α(0 ≤ α < 1) with negative coefficients in U, respectively [21].

Interesting generalization of the functions classes S∗(α) andC(α), are classes S∗(α, β) andC(α, β), where S∗(α, β) =  f ∈A:R  zf0(z) βf0(z) + (1 − β)f (z)  > α, (α, β ∈ [0, 1), z ∈ U)  and C(α, β) =f ∈A:R f 0(z) + zf00(z) f0(z) + βzf00(z)  > α, (α, β ∈ [0, 1), z ∈ U)  .

The classes TS∗(α, β) = S∗(α, β) ∩T and TC(α, β) = C(α, β) ∩ T were extensively studied by Altinta¸s and Owa [1], Porwal [19], Moustafa [13] and Porwal and Dixit [20].

Inspired by the studies mentioned above, Topkaya and Mustafa [23] defined a unification of the functions classesS∗(α, β) andC(α, β) as follows.

Definition 1.1. A function f of the form (1.1) is said to be in the classS∗C(α, β; γ) if it satisfies the following condition:

(1.5) R  zf0(z) + γz2f00(z) γz (f0(z) + βzf00(z)) + (1 − γ) (βf0(z) + (1 − β)f (z))  > α (z ∈ U), where α, β ∈ [0, 1) and γ ∈ [0, 1]. Also we denote TS∗C(α, β; γ) = SC(α, β; γ) ∩ T.

(3)

Let f ∈ CC(α, β; γ) if and only if zf0 SC(α, β; γ) and denote the classTCC(α, β; γ) to be defined as

TCC(α, β; γ) = CC(α, β; γ) ∩ T.

In particular, the classTS∗C(α, β; 0) = TS∗(α, β) andTS∗C(α, β; 1) = TC(α, β). Also, we have TS∗C(α, 0; 0) = TS∗(α) andTS∗C(α, 0; 1) = TC(α).

A function f ∈A is said to be in the class Rτ

(A, B),τ ∈ C\{0}, −1 ≤ B < A ≤ 1, if it satisfies the inequality

f0(z) − 1 (A − B)τ − B[f0(z) − 1] < 1, z ∈ U. This class was introduced by Dixit and Pal [4].

A variable X is said to be Pascal distribution if it takes the values 0, 1, 2, 3, . . . with probabilities (1 − q)m,qm(1 − q) m 1! , q2m(m + 1)(1 − q)m 2! , q3m(m + 1)(m + 2)(1 − q)m 3! , . . . ,

respectively, where q and m are called the parameters, and thus P (X = r) =r + m − 1

m − 1 

qr(1 − q)m, r = 0, 1, 2, 3, . . . .

Very recently, El-Deeb et al. [6] (see also, [2, 8, 9, 15]) introduced a power series whose coefficients are probabilities of Pascal distribution. Let

Ψmq (z) := z + ∞ X n=2 n + m − 2 m − 1  qn−1(1 − q)mzn, z ∈ U,

where m ≥ 1, 0 ≤ q ≤ 1. We note that, by the ratio test, the radius of convergence of above series is infinity. We also define the series

(1.6) Φmq (z) := 2z − Ψmq (z) = z − ∞ X n=2 n + m − 2 m − 1  qn−1(1 − q)mzn, z ∈ U.

Let consider the linear operatorIm

q :A → A defined by the Hadamard product Im q f (z) := Ψ m q (z) ∗ f (z) = z + ∞ X n=2 n + m − 2 m − 1  qn−1(1 − q)manzn, z ∈ U, where m ≥ 1 and 0 ≤ q ≤ 1.

There are several known results on connections between various subclasses of analytic and univalent functions using hypergeometric functions (see for example, [3, 11, 12, 22]) and using various distributions such as Yule-Simon distributions, Log-arithmic distributions, Poisson distributions, Binomial distributions, Beta-Binomial

(4)

distributions, Zeta distributions, Geometric distributions and the Bernoulli distri-bution (see, for example, [5, 7, 10, 14, 16, 17, 18]).

In this paper, we determine necessary and sufficient conditions for Φm q to be in the classes TS∗C(α, β; γ) and TCC(α, β; γ). Furthermore, we give sufficient conditions for Im

q (Rτ(A, B)) ⊂ TS

C(α, β; γ) and Im q (R

τ(A, B)) ⊂ TCC(α, β; γ). Finally, we provide necessary and sufficient conditions for the integral operator Gm

q f (z) = Rz

0 Φmq(t)

t dt to belong to the above classes. 2. Preliminary Lemmas

To establish our main results, we need the following lemmas.

Lemma 2.1.([23]) A function f ∈T of the form ( 1.2) is in the class TS∗C(α, β; γ) if and only if (2.1) ∞ X n=2 (1 + (n − 1)γ) (n − α − (n − 1)αβ) |an| ≤ 1 − α .

The result (2.1) is sharp.

Lemma 2.2. A function f ∈T of the form (1.2) is in the class TCC(α, β; γ) if and only if (2.2) ∞ X n=2 n(1 + (n − 1)γ) (n − α − (n − 1)αβ) |an| ≤ 1 − α .

The result (2.2) is sharp.

Lemma 2.3.([4]) If the function f ∈Rτ(A, B)is of the form (1.1), then |an| ≤ (A − B)

|τ |

n, n ∈ N − {1}. The result is sharp for the function

f (z) = Z z 0 (1 + (A − B) τ t n−1 1 + Btn−1)dt, (z ∈ U; n ∈ N − {1}).

3. Necessary and Sufficient Conditions

For convenience throughout in the sequel, we use the following identities that hold for m ≥ 1 and 0 ≤ q < 1:

∞ X n=0 n + m − 1 m − 1  qn= 1 (1 − q)m, ∞ X n=0 n + m − 2 m − 2  qn= 1 (1 − q)m−1, ∞ X n=0 n + m m  qn= 1 (1 − q)m+1, ∞ X n=0 n + m + 1 m + 1  qn = 1 (1 − q)m+2.

(5)

By simple calculations we derive the following relations: ∞ X n=2 n + m − 2 m − 1  qn−1= ∞ X n=0 n + m − 1 m − 1  qn− 1 = 1 (1 − q)m− 1, (3.1) ∞ X n=2 (n − 1)n + m − 2 m − 1  qn−1= qm ∞ X n=0 n + m m  qn= qm (1 − q)m+1, (3.2) ∞ X n=3 (n − 1)(n − 2)n + m − 2 m − 1  qn−1= q2m(m + 1) ∞ X n=0 n + m + 1 m + 1  qn = q 2m(m + 1) (1 − q)m+2. (3.3) and ∞ X n=4 (n − 1)(n − 2)(n − 3)n + m − 2 m − 1  qn−1 (3.4) = q3m(m + 1)(m + 2) ∞ X n=0 n + m + 1 m + 1  qn =q 3m(m + 1)(m + 2) (1 − q)m+3 .

Unless otherwise mentioned, we shall assume in this paper that α, β ∈ [0, 1), γ ∈ [0, 1] and 0 ≤ q < 1.

Firstly, we obtain the necessary and sufficient conditions for Φm

q to be in the classTS∗C(α, β; γ). Theorem 3.1. If m ≥ 1, then Φm q ∈TS ∗C(α, β; γ) if and only if (3.5) γ(1 − αβ)q 2m(m + 1) (1 − q)m+2 + (γ(2 − α) − αβ(γ + 1) + 1) qm (1 − q)m+1 ≤ 1 − α. Proof. Since Φmq is defined by (1.6), in view of Lemma 2.1 it is sufficient to show that P := ∞ X n=2 (1 + (n − 1)γ) (n − α − (n − 1)αβ)n + m − 2 m − 1  qn−1(1 − q)m ≤ 1 − α. Writing n = (n − 1) + 1 and n2= (n − 1)(n − 2) + 3(n − 1) + 1

(6)

and using (3.1)-(3.3), we get P = ∞ X n=2 γ(1 − αβ)n2+ (αβ(2γ − 1) − γ(1 + α) + 1) n + α(1 − γ)(β − 1) ×n + m − 2 m − 1  qn−1(1 − q)m = γ(1 − αβ) ∞ X n=3 (n − 1)(n − 2)n + m − 2 m − 1  qn−1(1 − q)m + (γ(2 − α) − αβ(γ + 1) + 1) ∞ X n=2 (n − 1)n + m − 2 m − 1  qn−1(1 − q)m + (1 − α) ∞ X n=2 n + m − 2 m − 1  qn−1(1 − q)m = γ(1 − αβ)q 2m(m + 1) (1 − q)2 + (γ(2 − α) − αβ(γ + 1) + 1) qm (1 − q) + (1 − α) (1 − (1 − q)m).

but this last expression is upper bounded by 1 − α if and only if (3.5) holds. 2 Theorem 3.2. If m ≥ 1,then Φmq ∈TCC(α, β; γ) if and only if

γ(1 − αβ)q 3m(m + 1)(m + 2) (1 − q)m+3 + (γ(5 − α) − αβ (4γ + 1) + 1) q2m(m + 1) (1 − q)m+2 + (2γ(2 − α) − 2αβ (γ + 1) + 3 − α) qm (1 − q)m+1 ≤ 1 − α. (3.6)

Proof. In view of Lemma 2.2 it is sufficient to show that

Q := ∞ X n=2 n(1 + (n − 1)γ) (n − α − (n − 1)αβ)n + m − 2 m − 1  qn−1(1 − q)m ≤ 1 − α. Writing n = (n − 1) + 1 n2= (n − 1)(n − 2) + 3(n − 1) + 1 and n3= (n − 1)(n − 2)(n − 3) + 6(n − 1)(n − 2) + 7(n − 1) + 1

(7)

and using (3.1)-(3.5), we get Q = ∞ X n=2 γ(1 − αβ)n3+ (αβ(2γ − 1) − γ(1 + α) + 1) n2+ α(1 − γ)(β − 1)n ×n + m − 2 m − 1  qn−1(1 − q)m = γ(1 − αβ) ∞ X n=4 (n − 1)(n − 2)(n − 3)n + m − 2 m − 1  qn−1(1 − q)m + (γ(5 − α) − αβ (4γ + 1) + 1) ∞ X n=3 (n − 1)(n − 2)n + m − 2 m − 1  qn−1(1 − q)m + (2γ(2 − α) − 2αβ (γ + 1) + 3 − α) ∞ X n=2 (n − 1)n + m − 2 m − 1  qn−1(1 − q)m + (1 − α) ∞ X n=2 n + m − 2 m − 1  qn−1(1 − q)m = γ(1 − αβ)q 3m(m + 1)(m + 2) (1 − q)3 + (γ(5 − α) − αβ (4γ + 1) + 1) q2m(m + 1) (1 − q)2 + (2γ(2 − α) − 2αβ (γ + 1) + 3 − α) qm (1 − q)+ (1 − α) (1 − (1 − q) m).

but this last expression is upper bounded by 1 − α if and only if (3.6) holds. 2 4. Inclusion Properties

Making use of Lemma 2.3, we will study the action of the Pascal distribution series on the classesTS∗C(α, β; γ) and TCC(α, β; γ).

Theorem 4.1. Let m > 1. If f ∈Rτ(A, B), thenImq f (z) is inTS

C(α, β; γ) if (A − B)|τ |  γ(1 − αβ) qm (1 − q)+ (αβ(γ − 1) − γα + 1) (1 − (1 − q) m) +α(1 − γ)(β − 1) q(m − 1) [(1 − q) − (1 − q) m− q(m − 1)(1 − q)m]  ≤ 1 − α. (4.1)

Proof. In view of Lemma 2.1, it suffices to show that

Λ := ∞ X n=2 (1 + (n − 1)γ) (n − α − (n − 1)αβ)n + m − 2 m − 1  qn−1(1 − q)m|an| ≤ 1 − α.

(8)

Since f ∈Rτ(A, B), then by Lemma 2.3, we have (4.2) |an| ≤ (A − B) |τ | n . Thus, we have Λ = (A − B)|τ | "∞ X n=2 [γ(1 − αβ)n + (αβ(2γ − 1) − γ(1 + α) + 1) +1 nα(1 − γ)(β − 1)  n + m − 2 m − 1  qn−1(1 − q)m  = (A − B)|τ | "∞ X n=2 [γ(1 − αβ)(n − 1) + (αβ(γ − 1) − γα + 1) +1 nα(1 − γ)(β − 1)  n + m − 2 m − 1  qn−1(1 − q)m  = (A − B)|τ |  γ(1 − αβ) qm (1 − q)+ (αβ(γ − 1) − γα + 1) (1 − (1 − q) m) +α(1 − γ)(β − 1) q(m − 1) [(1 − q) − (1 − q) m− q(m − 1)(1 − q)m]  .

But this last expression is bounded by 1 − α, if (4.1) holds. This completes the

proof of Theorem 4.1. 2

Theorem 4.2. Let m ≥ 1. If f ∈Rτ(A, B), then Imq f ∈TCC(α, β; γ) if (A − B)|τ |  γ(1 − αβ)q 2m(m + 1) (1 − q)m+2 + (γ(2 − α) − αβ(γ + 1) + 1) qm (1 − q)m+1  ≤ 1 − α.

Proof. According to Lemma 2.2 it is sufficient to show that H := ∞ X n=2 n(1 + (n − 1)γ) (n − α − (n − 1)αβ)n + m − 2 m − 1  qn−1(1 − q)m|an| ≤ 1 − α.

Since f ∈Rτ(A, B), using Lemma we have |an| ≤ (A − B) |τ | n , n ∈ N \ {1}, therefore H ≤ (A−B) |τ | " X n=2 (1 + (n − 1)γ) (n − α − (n − 1)αβ)n + m − 2 m − 1  qn−1(1 − q)m #

(9)

The remaining part of the proof is similar to that of Theorem 3.1 and so we omit

the details. 2

5. An Integral Operator

Theorem 5.1. Let m ≥ 1. Then the integral operator

(5.1) Gmq (z) := Z z 0 Φm q (t) t dt, z ∈ U, is in TCC(α, β; γ) if and only if the inequality (3.5) holds. Proof. According to (1.6) it follows that

Gm q (z) = z − ∞ X n=2 n + m − 2 m − 1  qn−1(1 − q)mz n n, z ∈ U. Using Lemma 2.2, the functionGm

q (z) belongs toTCC(α, β; γ) if and only if ∞ X n=2 n(1 + (n − 1)γ) (n − α − (n − 1)αβ)1 n n + m − 2 m − 1  qn−1(1 − q)m≤ 1 − α. By a similar proof like those of Theorem 3.1 we get thatGm

q ∈TCC(α, β; γ) if and

only if (3.5) holds. 2

Theorem 5.2. If m > 1, then the integral operator Gm

q (z) given by (5.1) is in TS∗C(α, β; γ) if and only if  γ(1 − αβ) qm (1 − q)+ (αβ(γ − 1) − γα + 1) (1 − (1 − q) m) +α(1 − γ)(β − 1) q(m − 1) [(1 − q) − (1 − q) m− q(m − 1)(1 − q)m]  ≤ 1 − α. (5.2)

The proof of Theorem Theorem 5.2 is lines similar to the proof of Theorem 4.1, so we omitted the proof of Theorem 5.2.

6. Corollaries and Consequences

By taking γ = 0 and β = 1 in Theorems 3.1, 4.1 and 5.2, we obtain the following necessary and sufficient conditions for Pascal distribution series to be in the classes TS∗(α, β) andTC(α, β). Corollary 6.1. If m ≥ 1, then Φm q ∈TS ∗(α, β) if and only if (1 − αβ) qm (1 − q)m+1 ≤ 1 − α.

(10)

Corollary 6.2. If m ≥ 1, then Φm q ∈TC(α, β), if and only if (1 − αβ)q 2m(m + 1) (1 − q)m+2 + (3 − α − 2αβ) qm (1 − q)m+1 ≤ 1 − α. Corollary 6.3. Let m > 1. If f ∈Rτ(A, B), thenImq f (z) is inTS∗(α, β) if

(A − B)|τ | [(1 − αβ) (1 − (1 − q)m) +α(β − 1) q(m − 1)[(1 − q) − (1 − q) m − q(m − 1)(1 − q)m]  ≤ 1 − α.

Corollary 6.4. Let m > 1. If f ∈Rτ(A, B), thenIm

q f (z) is inTC(α, β) if (A − B)|τ |  (1 − αβ) qm (1 − q)+ (1 − α) (1 − (1 − q) m)  ≤ 1 − α.

Corollary 6.5. If m > 1, then the integral operator Gmq (z) given by (5.1) is in TS∗ (α, β) if and only if (1 − αβ) (1 − (1 − q)m) + α(β − 1) q(m − 1)[(1 − q) − (1 − q) m− q(m − 1)(1 − q)m] ≤ 1 − α.

Corollary 6.6. If m > 1, then the integral operator Gmq (z) given by (5.1) is in TC(α, β) if and only if

(1 − αβ) qm

(1 − q)+ (1 − α) (1 − (1 − q)

m) ≤ 1 − α.

Acknowledgements. The authors would like to thank the referees for their help-ful comments and suggestions.

References

[1] O. Altinta¸s and S. Owa, On subclasses of univalent functions with negative coefficients, Pusan Kyongnam Math. J., 4(1988), 41–56.

(11)

[2] S. C¸ akmak, S. Yal¸cın, and S¸. Altınkaya, Some connections between various classes of analytic functions associated with the power series distribution, Sakarya Univ. J. Sci., 23(5)(2019), 982–985.

[3] N. E. Cho, S. Y. Woo and S. Owa, Uniform convexity properties for hypergeometric functions, Fract. Cal. Appl. Anal., 5(3)(2002), 303–313.

[4] K. K. Dixit and S. K. Pal, On a class of univalent functions related to complex order, Indian J. Pure Appl. Math., 26(9)(1995), 889–896.

[5] R. M. El-Ashwah and W. Y. Kota, Some condition on a Poisson distribution series to be in subclasses of univalent functions, Acta Univ. Apulensis Math. Inform., 51(2017), 89–103.

[6] S. M. El-Deeb, T. Bulboac˘a and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 59(2019), 301–314. [7] B. A. Frasin, On certain subclasses of analytic functions associated with Poisson

distribution series, Acta Univ. Sapientiae, Mathematica, 11(1)(2019),78–86. [8] B. A. Frasin, Subclasses of analytic functions associated with Pascal distribution

se-ries, Adv. Theory Nonlinear Anal. Appl., 4(2)(2020), 92–99.

[9] B. A. Frasin, Two subclasses of analytic functions associated with Poisson distribution, Turkish J. Ineq., 4(1)(2020), 25–30.

[10] B. A. Frasin and I. Aldawish, On subclasses of uniformly spiral-like functions asso-ciated with generalized Bessel functions, J. Func. Spaces, (2019), Art. ID 1329462, 6 pp.

[11] B. A. Frasin, T. Al-Hawary and F. Yousef, Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions, Afr. Mat., 30(1-2)(2019), 223–230.

[12] E. Merkes and B. T. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc., 12(1961), 885–888.

[13] A. O. Moustafa, A study on starlike and convex properties for hypergeometric func-tions, J. Inequal. Pure and Appl. Math., 10(3)(2009), Article 87, 8 pp.

[14] G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat., 28(2017), 1357–1366.

[15] G. Murugusundaramoorthy, B. A. Frasin and T. Al-Hawary, Uniformly convex spiral functions and uniformly spirallike function associated with Pascal distribution series, arXiv:2001.07517 [math.CV].

[16] G. Murugusundaramoorthy, K. Vijaya and S. Porwal, Some inclusion results of cer-tain subclass of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat., 45(4)(2016), 1101–1107.

[17] W. Nazeer, Q. Mehmood, S. M. Kang, and A. Ul Haq, An application of Binomial dis-tribution series on certain analytic functions, J. Comput. Anal. Appl., 26(1)(2019), 11–17.

[18] A. T. Oladipo, Bounds for probability of the generalized distribution defined by gen-eralized polylogarithm, Punjab Univ. J. Math., 51(7)(2019), 19–26.

[19] S. Porwal, An application of a Poisson distribution series on certain analytic func-tions, J. Complex Anal., (2014), Art. ID 984135, 3 pp.

(12)

[20] S. Porwal,and K. K. Dixit, An application of generalized Bessel functions on certain analytic functions, Acta Univ. M. Belii Ser. Math., 21(2013), 55–61.

[21] H. Silverman, Univalent functions with negative Coefficients, Proc. Amer. Math.Soc., 51(1975), 109–116.

[22] H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl., 172(1993), 574–581.

[23] S. Topkayaa and N. Mustafa, Some analytic functions involving Gamma function and their various properties, arXiv:1707.05126v1 [math.CV].

참조

관련 문서

15.3 Functions Given by Power Series 15.4 Taylor and Maclaurin Series.

15.3 Functions Given by Power Series 15.4 Taylor and Maclaurin Series..

 A power series with a nonzero radius of convergence R represents an analytic function at every point interior to its circle of convergence..  The derivatives of this

Substitute the series with undetermined coefficients and its derivatives.. [Reference] 5.4 Bessel’s Equation.. 11.6 Orthogonal Series.. 11.6 Orthogonal Series..

 A series of systems for configuring alarm and control functions by monitoring the states of main engine, generator, and auxiliary equipment, for securing the safety

“In fact the great watershed in optimization isn’t between linearity and nonlinearity, but convexity and nonconvexity.” - Rockafellar We can find global optima in polynomial

Similarly, can define quasiconvex optimization problem: ‘convex’.. (‘concave’) is replaced by

Ø Fourier series: Infinite series designed to represent general periodic functions in terms of simple ones (e.g., sines and cosines).. Ø Fourier series is more general